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ABSTRACT

Driven by deep learning, there has been a surge of specialized
processors for matrix multiplication, referred to as Tensor Core
Units (TCUs). These TCUs are capable of performing matrix multi-
plications on small matrices (usually 4 x 4 or 16 x 16) to accelerate
HPC and deep learning workloads. Although TCUs are prevalent
and promise increase in performance and/or energy efficiency, they
suffer from over specialization as only matrix multiplication on
small matrices is supported. In this paper we express both reduc-
tion and scan in terms of matrix multiplication operations and map
them onto TCUs. To our knowledge, this paper is the first to try to
broaden the class of algorithms expressible as TCU operations and
is the first to show benefits of this mapping in terms of: program
simplicity, efficiency, and performance. We implemented the reduc-
tion and scan algorithms using NVIDIA’s V100 TCUs and achieved
89% — 98% of peak memory copy bandwidth. Our results are orders
of magnitude faster (up to 100x for reduction and 3 x for scan) than
state-of-the-art methods for small segment sizes (common in HPC
and deep learning applications). Our implementation achieves this
speedup while decreasing the power consumption by up to 22% for
reduction and 16% for scan.
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1 INTRODUCTION

Deep learning’s reliance on matrix-multiplication (GEMM) for
compute has driven both research and industry to develop matrix-
multiplication accelerator hardware — collectively called Tensor
Core Units (TCUs) in this paper. TCUs are designed to accel-
erate Multilayer Perceptrons (MLP), Convolutional Neural Net-
works (CNN), and Recurrent Neural Networks (RNN) or Deep
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Figure 1: Each subcore (processing block) in the NVIDIA Tesla
V100 PCI-E architecture contains 2 TCUs. In total, 640 TCUs
are available — achieving a theoretical peek of 113 TFLOPS.

Neural Network (DNN) in general. TCUs come under the guise
of different marketing terms, be it NVIDIA’s Tensor Cores [55],
Google’s Tensor Processing Unit [19], Intel’s DLBoost [69], Apple
A11’s Neural Engine [3], Tesla’s HW3, or ARM’s ML Processor [4].
They vary in the underlying hardware implementation [15, 27, 63,
71], and are prevalent [18, 55, 58] in both cloud and edge devices.

To show the theoretical benefits of TCUs, consider the NVIDIA
Volta V100 GPUs architecture.Using V100 Tensor Cores, one achieves
a 8x throughput increase per Streaming Multiprocessors (SM) over
previous Pascal GP100 generation. This throughput increase is be-
cause each V100 SM is capable of performing 1024 half precision
operations per cycle using the TCUs whereas the GP100 SM is capa-
ble of performing 128 half precision operations per cycle without the
TCUs. The throughput increase is enabled by the fact that the V100
dedicates a large chip area of the SM subcore to TCUs (Figure 1).

Although TCUs are prevalent and promise increase in perfor-
mance and/or energy efficiency and are heavily used within super-
computers [32, 57] to achieve exascale performance, they suffer
from over specialization. Currently, no algorithm other than GEMM
utilizes the NVIDIA TCUs. This results in idle TCUs, low chip
utilization, and limits TCUs applicability to specialized libraries or
narrow application domains.

The objective of the paper is to expand the class of algorithms that
can execute on TCUs— enabling the TCUs to be used within a wider
range of non-GEMM algorithms. We choose reduction and scan,
since a large body of work [7, 9, 36] has shown that they are key
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primitives for data parallel implementations of radix sort, quicksort,
lexical analysis, stream compaction, and polynomial evaluation. In
this paper, we formulate a mapping of reduction or scan onto TCUs.
We then introduce algorithms for cache- (warp-), processing element
(PE)/core- (block-), and device- (grid-) level reduction and scan
and show their performance on NVIDIA TCUs. We separate our
algorithm description from implementation, making the algorithms,
motivation, methods, and observations generally applicable to a
broader range of TCUs and numerical precision agnostic. While
the formulation is the main objective of the paper, we show that an
implementation of our algorithms on NVIDIA V100 is either order
of magnitude faster or rival the fastest GPU implementation, with
much lower programming complexity. The key contributions of the
paper are:

(1) We show how to use TCUs to compute both reduction and
scan. We believe we are the first to formulate these algorithms
in terms of TCU operations in a manner that is independent
to the underlying TCU architecture.

(2) We implement our algorithms onto NVIDIA V100 GPUs
and show orders of magnitude speedup over state-of-art algo-
rithms for small segment sizes. Small segements are common
in mathematics (e.g. evaluating polynomials), scientific ap-
plications (e.g. finite difference), and machine learning (e.g.
batch norm) applications. For large segments, we are com-
parable to the fastest algorithms and achieve 89 — 98% of
theoretical peak memory copy bandwidth.

(3) We show that our implementation is up to 22% more power ef-
ficient and decreases the utilization of general purpose ALUs.

(4) We describe the current usage and programmability of the
NVIDIA TensorCore and evaluate GEMM on the TCUs using
cuBLAS [46], CUTLASS [49] and the CUDA TCU APIL.

This paper is divided as follows: we first describe the NVIDIA

TCUs and show the performance of GEMM and GEMV computation
in Section 2. In Section 3, we give a background of reduction and
scan and show the TCU algorithms for reduction (Section 4) and
scan (Section 5). We then compare our implementation against state-
of-the-art in Section 6. Section 7 describes the related work, before
we conclude in Section 8.

2 TENSOR CORES UNITS (TCUS)

A marquee feature of NVIDIA’s GPUs (Volta’s Tesla V100 and
Turning’s TU102 architectures) and Google’s TPUs are their TCUs—
a programmable matrix multiply and accumulate hardware units,
called Tensor Cores by NVIDIA and matrix-multiply-units (MXUs)
by Google !. While there are other competing TCU implementations,
both NVIDIA Tensor Cores and Google’s TPU are by far the most
popular. At a high level, their functionality and architectural design

are similar. They both subdivide the device into cores, with each

having multiple processing block (or subcores) and TCUs. Figure 1

illustrates a subcore in an NVIDIA SM, with the V100 containing 80

SMs and each having 4 subcores. In turn, each subcore contains two

Tensor Cores — for a total of 640 Tensor Cores and achieve a 12x

throughput improvement over previous generation Tesla P100 [54].
Google’s TPUV3 device, on the other hand, has 8 cores — 4 chips

each with 2 cores — with each core having 2 MXUs.

'We will use TCU and Tensor Core interchangeably in this paper.
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Since Google TPUs currently can only be used within Google
Cloud using the XLLA compiler [33] and the NVIDIA V100 TCUs
are widely available and are installed in supercomputers [32, 57], this
section will only describe the TCU usage and results for NVIDIA
V100. Similar analysis can be performed for other TCUs.

Each NVIDIA V100 Tensor Core provides a 4 X 4 x 4 tensor
processing array capable of performing the operation D=A-B+C
within a cycle, where A, B, C and D are 4 x 4 matrices. The inputs
A and B must be in half precision format while the accumulators,
C and D, can be either single or half precision. Each Tensor Core
can perform 64 (4 X 4 x 4) FMA operations per cycle. Therefore,
using the TCU each SM can perform 1024 (64 X2 X 8) floating
point operations per cycle, since each FMA consists of two floating
point operations and each SM contains 8 Tensor Cores. This is an
8% SM throughput increase compared to Pascal for floating point
operations [54]. This section first describes the current usage of
the NVIDIA Tensor Cores, then details the current NVIDIA Tensor
Cores API, and presents evaluation results to motivate our work.

2.1 Current Library Usage

Currently, Tensor Cores have only been used to accelerate GEMM
operations, most prominently through NVIDIA’s CUDA libraries
(such as cuBLAS [46] and cuDNN [48]). These libraries require
users to opt-in to use the Tensor Cores to accelerate GEMM com-
putation.NVIDIA also provides the CUTLASS (CUDA Templates
for Linear Algebra Subroutines) [49] library, which is a C++ tem-
plated library that provides building block primitives to write high
performance GEMM-like kernels. Deep learning frameworks such
as NVCaffe [25], Caffe2 [8], MXNet [43], PyTorch [59], Tensor-
Flow [67], and TensorRT [56] leverage these NVIDIA libraries for
DNN training [50] and inference acceleration.

2.2 Programming Interface

Aside from the libraries, NVIDIA also provides a CUDA C++ Warp
Matrix Multiply and Accumulate (WMMA) [47] API to program
the Tensor Cores directly. The current WMMA API provides warp-
level matrix operations for matrix load (load_matrix_sync), matrix
store (store_matrix_sync), and matrix multiply and accumulate
(mma_sync). These APIs operate on a special data type fragment,
which holds a matrix tile in thread-local registers. A helper function
to broadcast a scalar constant into a fragment (fill_fragment) is
provided as well. No API currently exists for calling TCU operations
at sub warp level — neither in the IR nor in the PTX [52, 53].

The load_matrix_sync function distributes values of the matrix
across the warp lanes. Threads within a warp utilize multiple Tensor
Cores concurrently to perform the mma_sync operation — collabo-
rating to compute the Dys«n = Ayxk - Bk xv +Cyxn, with M, N, K
denoting the matrix dimensions. The API imposes limitations on the
dimensions — requiring the shape (M, N, K) to be either (16,16, 16),
(32,8,16), or (8,32,16).

Listing 1 shows a CUDA kernel that computes a (16,16, 16)
matrix multiplication within a warp using the WMMA API. Lines 4—
6 declare the matrix fragments. The API supports 3 kinds of matrices

—matrix_a (A), matrix_b (B), and accumulator (C or D) — with
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Figure 2: General matrix-matrix multiplication (GEMM) performance using Tensor Cores for both half- (2a) and mixed- (2b) pre-
cision on a V100 PCI-E GPU with a clock frequency of 1380 MHz and a 113 TFLOPS peek performance. The inputs are square
matrices with variable (M,N,K) dimensions. The optimized and naive WMMA GEMM algorithms are described in the text.

#include <mma.h>

1

2 using namespace nvcuda::wmma;

3 __global__ void dot_wmma_16x16 (half xa, half *xb, half xc) {
4 fragment<matrix_a, 16, 16, 16, half, col_major> a_frag;
5 fragment<matrix_b, 16, 16, 16, half, row_major> b_frag;
6 fragment<accumulator, 16, 16, 16, half> c_frag;

7 load_matrix_sync(a_frag, a, /* row stride */ 16);

8 load_matrix_sync(b_frag, b, /* row stride */ 16);

9 fill_fragment(c_frag, 0.0f);

10 mma_sync(c_frag, a_frag, b_frag, c_frag);

11 store_matrix_sync(c, c_frag, 16, row_major);

S

3

Listing 1: A simple CUDA kernel performing (16, 16, 16) ma-
trix multiplication (C = A - B + C) in half precision using the
CUDA WMMA APIL.

each having their own internal data layout % as well as loading,
storing, and computing semantics. Users specify both the data type
and the (M,N,K) shape of the fragments. For both the A and B
kinds, users specify whether the matrix is in column- or row-major
order. Users also specify the stride between rows and load the data
from either shared or global memory (Lines 7-8). Line 9 initializes
the matrix_c elements to zero by broadcasting the scalar value 0
into the fragment. Once the data is loaded, users perform the matrix
multiplication operation (Line 10) and store the results (Line 11).
The kernel in Listing 1 can be generalized to implement GEMM
for arbitrary matrix dimensions in a manner similar to tiling matrix
multiplication. For example, a naive implementation (referred to as
WMMA HGEMM (naive)) assigns a strip of 16 rows from matrix A and a
strip of 16 columns from matrix B columns to each warp to compute
a 16 x 16 tile of the output C. Each warp iterates through the A rows
and B columns by loading 16 x 16 tiles of A and B from global mem-
ory into the fragments using load_matrix_sync, then performing
mma_sync, and repeats. After all rows of A and columns of B have
been consumed, the warp uses store_matrix_sync to store the
accumulated C values into global memory. An optimized implemen-
tation (referred to as WMA HGEMM) utilizes persistent threads where
each thread block collaboratively loads multiple tiles of matrix A
and B into shared memory (to facilitate tile re-use). The tiles are then
loaded into fragments and the mma_sync operation is performed.

2The mapping between individual matrix elements to their residing thread(s) is purposely
opaque [47] and undocumented. We discuss how we alleviate some of the constraints in
Section 6.1.
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Figure 3: General matrix-vector multiplication (GEMYV) per-
formance using Tensor Cores on a V100 PCI-E GPU. GEMV
can be implemented in terms of a GEMM (with dimensions
(M,N,16)) or calling the GEMV method in CUBLAS (which
currently does not support half precision).

2.3 GEMM Evaluation

To show the TCU performance, we evaluate GEMM using Tensor
Cores on an NVIDIA Tesla V100 PCI-E GPU with CUDA 9.2.88
through cuBLAS, CUTLASS (version 0.1.1), and hand written ker-
nels using the WMMA API (Figure 2).

For half precision GEMM (HGEMM), shown in Figure 2a, cuBLAS
HGEMM with Tensor Cores achieves a maximum performance of
96.3 TFLOPS — approximately 85% the peak performance — and
over 3.4x that of cuBLAS without the use of TCUs. For mixed
precision GEMM (MGEMM), shown in Figure 2b, a maximum
performance of 85.8 TFLOPS is achieved on NVIDIA TCUs us-
ing cuBLAS, approximately 76% the peak performance, for a 6.2 x
speedup over cuBLAS without Tensor Cores (the degradation of
performance compared to HGEMM is due to output bytes count
being twice as large). CUTLAS MGEMM is more performant than
HGEMM, this is due to compiler and hardware optimizations for
mixed precision that are absent from half precision [62].

2.4 GEMY Evaluation

The order of magnitude speedup of GEMM with TCU raises the ques-
tion: can we formulate other algorithms in terms of matrix multipli-
cation and also benefit from the TCU? The most obvious algorithm is
matrix-vector multiplication (GEMV). We implement HGEMV (half
precision GEMV) and MGEMV (mixed-precision GEMV) using
cuBLAS HGEMM or MGEMM with dimension (M, N, K = 16).This
method wastes at least 15N memory loads and performs 15MN extra
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Figure 4: The reduction algorithm is 0 composed of warp-

level reduction that reduces each segment and is used to 9
implement block-level reduction that further reduces each seg-
ment of partially reduced values. The partially reduced values
are reduced across the grid 9 to perform full reduction.

flops. We evaluate our implementations against cuBLAS SGEMY,
since half precision GEMV is not present within cuBLAS.

Figure 3 shows that even when accounting for both resource and
computation waste, HGEMYV, implemented using cuBLAS HGEMM
with Tensor Cores, outperforms cuBLAS SGEMYV by at least 2x
and saturates at 900 GFLOPS due to the HBM2 global memory
bandwidth. Naive > HGEMV and MGEMV are super imposed atop
each other since the overhead of using mixed-precision is dwarfed by
the inefficient memory access. Both naive versions still outperform
cuBLAS’ SGEMV for large inputs.

The GEMV evaluation shows that the performance of matrix
multiplication on NVIDIA TCUs is high enough to tolerate resource
and computation waste in algorithms. Driven by this observation, we
examine how to formulate two widely used primitives — reduction
and scan — to utilize TCUs.

3 REDUCTION AND SCAN ON GPUS

We start by defining reduction and scan. Reduction (also called fold
or fotal) of a vector A = [al ,ay, ... ,a,,] is defined by its sum X7_, a;.
Segmented reduction is defined as reductions on subsets of the input
vector. In a regular segmented reduction, all segments are the same
size*. The scan operation (also called prefix sum) for the same vector
A is defined by the vector [al ,ap+ag,..., 20, a,-] . Segmented scan
is defined similarly to segmented reduction.

__device__ half warp_reduce(half val) {

if (laneid >= offset) val += n; }
return val; }

1

2 for (int offset=WARP_SIZE/2; offset>0; offset/=2)
3 val += __shfl_down_sync(@xFFFFFFFFU, val, mask);
4 return val; }

5 __device__ half warp_scan(half val) {

6 for (int offset=1; offset<WARP_SIZE; offset*x=2) {
7 auto n = __shfl_up_sync(@xFFFFFFFFU, val, mask);
8

9

Listing 2: NVIDIA’s recommended warp-level reduction
and scan implementations utilizing shuffle instructions.

3Note that one implicitly performs tiling when utilizing the WMMA API.
“Trregular segmented reduction is implemented in terms of regular segmented reduction
by padding the input.
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3.1 State-of-the-art Implementations

For GPUs, state of the art libraries [1, 12, 38] implement both reduc-
tion and scan in terms of warp-, block-, and device-level collectives,
as illustrated in Figure 4. The warp-level are commonly implemented
using shuffle instructions [28], shown in Listing 2, which allows
threads within a warp to share values via registers without syn-
chronization or using shared memory. Shuffle instructions can be a
bottleneck due to their limited throughput, however. For example,
on the NVIDIA Volta architecture only 32 warp shuffle operations
can be performed within a clock cycle per SM.

4 TCU REDUCTION ALGORITHM

Intuitively, reduction can be implemented using TCUs by represent-
ing it as a special case of matrix multiplication, since

L1 -1 a ay ... oap\ 2,:[“:‘ 0 - 0

o0 - 0 o 0 - 0 0 0 -~ 0
Redu(:tivn[ahaz,,..‘a,,}: oL N L . =

00 -0/ \o 0o - o0 0 0 - 0

The challenge is to map generic input sizes onto the fixed matrix
dimensions supported by the TCUs. For simplicity, this paper will
assume that the TCU supports only matrices with 16 x 16 dimension.
Other hardware may require other dimensions and those can be used
without modifying the core idea of the algorithms. The algorithms
are also presented in a precision agnostic way.

We use Reductiong to represent a K regular segmented reduction
— partial reductions of the input uniformly partitioned into K element
subsets. We will use P to denote the matrix which has ones for the
first row and zero otherwise (i.e. p,. = ! 1fr =0 ), and the

’ 0 ifr+0
notation X for a matrix where all elements are the constant value X.

To make our formulation non-NVIDIA WMMA API specific,
we present our algorithms in an API neutral way. In the following
sections, we use LoadTile in place of the load_matrix_sync which
takes a memory address, a matrix layout (default is row-major), and
stride (default is 16) as input. We abstract store_matrix_sync to
make it addressable as if it were a linear array. We will also use
the notation A - B+ C to denote the mma_sync operation. This paper
however uses the standard CUDA terminology for warp, block, and
grid to explain the algorithms, since no other standard nomenclature
exists. The warp, block and device used in this paper correspond to
the three memory hierarchy levels: L-Cache, PE/core, and device.

4.1 L-Cache (Warp)-level Reduction

We introduce warp-level reduction first, since it is the building block
for both block- and grid-level reductions. We formulate reduction
using TCUs for segment sizes 16, 256, and multiples of 16 and
256. Support for arbitrary segment sizes can be supported either by
padding the input with zeros or by masking the P matrix. We find
that padding introduces minimal overhead and is required in some
cases to maintain the memory alignment imposed by the TCU APIs.

Segment Size 16: The Reductiong algorithm, shown in Algorithm 1
and Figure 5, performs warp-level reduction on 256 elements which
represent 16 segments of size 16. On Line 3 in Algorithm 1 or
Step 0 in Figure 5, the data is loaded from memory into a column-
major order fragment (matrix A). Each row is then reduced using
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Figure 5: The Reduction ¢ algorithm 0 each warp loads 256
elements into the matrix A in column major order from the in-
put vector, 9 performs the TCU operation where the P matrix
has ones for the first row, and then 8 the result, which is in the
first row of V, is stored into the output vector.

V =P-A (Line 4 or Step g). The result — first row of V — is
stored in the output memory (Line 5 or Step 9).

Algorithm 1 The Reductionq algorithm.

. Initialize P matrix.

. idx < global offset

: A < LoadTile (in [idx. cidx+ 256} ,“colmaj()r”)
V+P-A+0

. if laneldx < 16 then out [i{i—g + laneldx} —V [lane[dx}

[T U SR

Segment Size 256: For handling segments of size 256, one follows
a pattern similar to Reduction . The algorithm is shown in Al-
gorithm 2 and is a single iteration of the algorithm illustrated in
Figure 6. First, all 256 elements are loaded onto the TCU (Line 3).
The rows are reduced using the same procedure as Reductiong
(Line 2-4) the resulting columns are reduced using PT (Line 5)
before we store the scalar result (Line 6) into memory.

Algorithm 2 The Reduction;sg algorithm.

. Initialize P matrix

. idx < global offset

: A < LoadTile (in [idx. cdx+ 256} ,“colmajor”)
V+P-A+0

V«Vv-PT+0

- if laneldx = 0 then our | 5] « v [0]

R SR

Segment Size Multiples of 256: With the above Reductions and
Reduction;sq warp-level primitives, we can express segments that
are multiples of either 16 (denoted by 16/N) or 256 (denoted by
256N). We will first look at the 256N algorithm, since it will be used
for representing the 16N algorithm.

A naive way is to implement the 256N segmented reduction as N-
repeated applications of the Reduction;se, shown in Figure 6. While
this is correct, it is work inefficient — wasting one matrix multiplica-
tion for each iteration. Instead of performing two reductions in each
iteration, we can implement a work efficient 256N segmented reduc-
tion by first reducing each row of the 16 x 16 matrix (Reductiong)
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in each iteration and then using the row of reduced values as an
accumulator. In the final iteration, the final row is reduced into a
scalar. Figure 7 illustrates the work-efficient algorithm.

Segment Size Multiples of 16: Similar to Reduction;ss, segmented
reduction where the segment size is multiples of 16 (16N) can be
performed in two ways. The first is a strided segmented reduction,
shown in Figure 8 (for the case where N = 2). During each iteration
i, a warp loads 16 segments (each of length 16) into the matrix A
with a stride of 16N (Steps a and 6), i.e., the beginning of each
16-element segment is 16N elements away from the beginning of
the next segment in the original input vector. The 16 columns of A
are then reduced and accumulated into the first row of V(Steps Q
and °)~ This repeats for N iterations. This method is simple, works
for arbitrary multiple of 16, and leverages GPU cache for small N.
For large N this method suffers from bad locality.

Algorithm 3 makes better use of cache locality and reduces unco-
alesced memory accesses. The algorithm implements Reduction gy

in terms of Reduction;sey for N > 256. The left over, Reduction(N%16) «16°

can be implemented using the strided segmented 16N reduction
method.

4.2 PE/Core (Block)-level Reduction

When the segment size is large, collaborative reduction within a
block becomes profitable. We follow standard practice [38] to imple-
ment block-level reduction, but differ in that we still use the TCU
to perform reduction on the partially reduced values within a block.

Figure 6: The work-inefficient Reduction,sey algorithm o ini-
tializes the Q matrix with all zeros and 9 loads the 256 input
elements into a matrix A in column major order. 9 A dot prod-
uct V = P-A+0 where the P matrix has the first row as ones and
the rest of the values are zeros is performed to reduce each row
into a scalar. @) the dot product R =V - PT + 0 reduces the first
row into a scalar. e If the segmented reduction size is equal to
the matrix size (i.e. N = 1) or for the last iteration, then the first
element of the R matrix is stored in the output array, otherwise
e the first element of R is used as the first element of the O
matrix and the procedure is iterated starting from step e



Figure 7: The work-efficient Reduction,sey algorithm o loads
256 input elements into matrix A; in each iteration. It then 9
performs a matrix multiplication V; = P-A; +V;_, for i between 1
and N with V) = 0. The final vector is reduced 9 by performing
the R = Vyy - PT operation and the e result stored as output.

Figure 8: A strided Reduction gy algorithm for N =2 o loads
256 elements where the stride between each row is 16N. 9 We
then perform the matrix multiplication V; = P-A; and 9 use
the V; matrix as an accumulator for the next iteration where
e we again load the next 256 elements with the leading dimen-
sion set to 16N. The e matrix multiplication V, = P-A, +Vj is
performed and 0 the first row is stored in the output vector.

Algorithm 4 shows how warp-level reduction is used to implement
the block-level Reduction,sey kernel.

4.3 Device (Grid)-level Reduction

When the segment size is very large a grid-level reduction might be
needed. A naive grid-level reduction for a list of length N involves
two kernel launches. The first kernel launch performs a segmented
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Algorithm 3 The Coalesced Reduction gy algorithm.

. Initialize P matrix

1

2:V<«+0

3: gidx global offset

4: numSegs + | 1 736 iy > Number of 256 segments
5: for i < 0;i < numSegs;i < i+1 do

6: idx < gidx +256i

7: A < LoadTile (in [idx. cidx+ 256} ,“colmajor”)

8: V«P-A+V

9: > Reduce rest of segments using StridedReduction g
10: if laneldx < 16 then out hl@)/{ +laneldx] «—V [laneldx}

Algorithm 4 The Block-level Reduction;)sey algorithm.

1: wpb < warps per block

2: prils < alloc shared mem [wpb|

3: partial eReductionzx% (zn)

4: if laneldx = O then prtls [warpldx} < partial

5. sync threads
6: if warpldx = 0 then out [blockldx} < Reduction,,,), (prtls)

reduction with the output stored in a list of partials. A second kernel
then reduces the partials into a scalar. Although this algorithm is
naive, its performance is on par with the fastest algorithm.

S TCUSCAN ALGORITHM

It might be less intuitive to represent scan as matrix multiplication.
For a vector V of 256 elements, we can store it in row-major order
within a 16 x 16 matrix A — with a; j =V [16 (j — 1) +i].

ail a2 a6

as,) ap az 16

- 416,16

We notice that a row-wise scan can be obtained by multiplying
the matrix A with an upper diagonal matrix — with the values of the
upper diagonals being 1 and the rest 0.
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Similarly, to get the scan of each column one can use a lower
diagonal matrix. We use a strict lower diagonal, i.e. the diagonal is
0, to get an exclusive scan of each column.
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We then use the L-A matrix to create a G matrix where each
element G| ; is the reduction of the j’h row of L-A. That is, all
elements in the ;7 row of G are of the same value — the sum of all

elements preceding the j' row of A, i.e. G; i = =3/ 112 16 Ap;- The

G matrix can be generated by multiplying L-A w1th a matrlx with



all element values set to 1. We then add G to the A - U matrix to
generate the scan of V — which is read in linear row-major order.
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Throughout this section we will use U to represent the upper
diagonal matrix where the upper diagonal values are one, and use
L to represent the strict lower diagonal matrix where the values
1 ifr>=c

below the lower diagonal are one — i.e. U, = )
' 0 ifr<c

1
and L. = {0

5.1 L-Cache (Warp)-level Scan

With the above derivation, we follow a similar structure to Section 4:
first introducing warp-level primitives before presenting the block-
and grid-level primitives. We write Scank to represent a K regular
segmented scan. Since the process of building warp-level, block-
level, and grid-level scans from Scang is very similar to that of
reduction, we will only highlight the key differences.

ifr<c
ifr>=c

Segment Size 16: Is the RowScan equation above and is illustrated in
Figure 9 as steps c, @, and 9

Segment Size 256: Is implemented using 3 matrix multiplications
shown in Figure 9 and presented mathematically above.

Segment Size Multiples of 16: Is similar to strided 16N reduction,
with the key difference being that we broadcast the last column
rather than the reduced scalar value and is shown in Algorithm 5.

Algorithm 5 The Scan gy algorithm.

1: Initialize U matrix.

2: gidx < global offset

3: 850

4: lid < laneldx

5. fori < 0;i <N;i<i+1do

6: idx < gidx+16i

7. A< LoadTile (in [idx...idx+256N]| ,stride = 16N
8: R+—A-U+S

9: S« Broadcast (LastColumn (R))

10: if lid < 16 then

11: 0l < idx +lid x 16N

12: out [0i...0i+16] < R[16lid ... 16lid +16]

Segment Size Multiples of 256: Only a small modification to Scanysg
is needed to implement Scanysey and is illustrated in Figure 9 and
Algorithm 6. Line 11 in Algorithm 6 shows that we keep track of the
sum (last element of the R matrix) and broadcast it to the S matrix
after each iteration. The S matrix is then used when performing
subsequent iterations.
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>
(=
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Figure 9: The Scan)sey algorithm o loads 256 elements from
the input vector into a matrix A and 9 initializes the S matrix
to 0. The eAU =A-U+S and e LA = L-A + (0 matrix multi-
plications are performed to compute the prefix sum of each row
and column. e A row wise reduction is performed on the LA
and added to the AU matrix. e The result R is stored in the
output vector. 0 If the segment size is a multiple of 256, then
the last element of R (position 16,16) is broadcasted into the S
matrix and the procedure is repeated.

Algorithm 6 The Scanysey algorithm.

1: Initialize U and L matrices.

2: gidx < global offset

3: 5«0

4: fori <+ 0;i <N;i<i+1do
5: idx < gidx +256i

6: A< LoadTile (in [idx...idx+256])
7: AU +—A-U+S

8: LA+ L-A+0

9: R+ ILA-1+AU
10: out [idx. cddx+ 256] «—R
11: S < Broadcast (R [255])

5.2 PE/Core (Block)-level Scan

Algorithm 7 shows how to perform the scan at the block level. It first
computes the segmented scan using the warp primitives (Line 8-13),
stores the reduced values into a partials list (Line 16), performs a scan
on the partial list (Line 17), and adds the values to the intermediate
results to get the output (Line 19-23).

Algorithm 7 also exercises the TCU to perform the scan on the
partially reduced values across tiles. On Line 16 we use the offset of
the last row (240) and 256 as the leading dimension when loading
the tile. This loads the last row of R across tiles into E. Line 17 then



Algorithm 7 The Block-level Scanjsgy algorithm.

: Initialize U and L matrices.

1

2: gidx < global offset

3: wpb < warps per block > Assumed to be less than 16
4: sout + alloc shared mem [256 x 16]

5. prtls + alloc shared mem [16] > Partial sums
6: S+ 0

7: for i < 0;i < N;i < i+warpsPerBlock do

8: idx < gidx+256 (i + warpldx)

9: A< LoadTile (in [idx...idx+256))
10: AU +—~A-U+S
11: LA+ L-A+0
12: R+ LA-1+AU

13: sout [256warpldx. ..256warpldx + 256] <R
14: sync threads
15: if warpldx = 0 then

16: E < LoadTile (sout [240. . .4096} ,stride = 256)

17: prils < LastColumnScane (E) > Exclusive scan
18: sync threads

19: for j < 1;j <256;j < j+warpSize do

20: it < j+laneldx

21: val < sout [256warpldx+ it] + prtls [warpldx]

22: out [idx+ it] —val

23 S« Broadcast (prtls[15])

performs an exclusive scan on the last column of the E and stores
the results into the list of partials.

5.3 Device (Grid)-level Scan

Similar to reduction, the segmented scan is used as a building block
for the grid-level scan. The grid-level scan uses a text book imple-
mentation, scan-then-propagate strategy, and involves 3 kernel calls.
The first kernel uses segmented scan and produces partially reduced
values for each block. The second kernel performs a scan on the
partially reduced values. The third kernel then uniformly adds the
partially scanned values to their corresponding segments.

6 EVALUATION

We implemented the algorithms presented in Sections 4 and 5 using
NVIDIA’s WMMA API. The code (available at https://github.com/
c3sr/tcu_scope) is implemented as a C++ header library with an API
similar to CUB’s — providing functions such as SegmentedReduce,
Reduce, SegmentedScan, and Scan. We employ auto-tuning to se-
lect the ideal algorithm, number of warps (or independent TCU
operations) per block, coarsening factor (the number segments to
perform within a warp), and block dimensions for the user-provided
segment size.

We evaluate our implementation on an Intel Xeon E5-2698 with
CentOS 4.3, CUDA Driver 396.26, and CUDA Runtime 9.2.88
installed. We use the Tesla V100-PCIE GPU with 16GB of GPU
HBM2 memory and a theoretical peak bandwidth of 900GBs or 450

3 The implementation of LastColumnScans is performed by loading the last column
values into the first row and performing an TCU version of the exclusive scan algorithm.
Formulating the intermediate operation this way is needed to adhere to the CUDA
WMMA API’s byte alignment constraint for loading fragments.
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billion half precision elements per second. All the results below
show the throughput of the algorithms in terms of billions of half
precision elements per second.

6.1 Relaxing the WMMA API Constraints

Constraints arise when using the current WMMA API for non-
GEMM computation. These limitations would not exist if one is
to perform just GEMM computation. The constraints observed were:

(1) Loads or stores must be performed at fragment granularity.

(2) Loading and storing fragments can only be performed using

global or shared memory; constant memory cannot be used.

(3) The memory layout for the matrix kinds are not the same and

their is no API to perform casts between them.

We address these limitations in different ways within our imple-
mentation. For (1) and (2) we use knowledge about the internal
layout of the fragment [26] and implemented WMMA API enhance-
ments tailored to our usage. Listing 3 shows an example of our API
extensions for operating on partial fragments.

using frag_b = fragment<matrix_b, 16, 16, 16,
__device__ int matrix_b_get_row_idx() {
const int laneldx = threadIdx.x % warpSize;
return laneldx&0x10 >> 2 + laneldx&0x0B;

half, row_major>;

__device__ void
#pragma unroll
for (int ii = @; ii < f.num_elements; ii++)

f.x[ii] = matrix_b_get_row_idx () < ii ? @.0f :
__device__ void matrix_b_get_first_column(halfx out,
const int laneid = threadIdx.x % warpSize;
// avoid redundant writes
= f.x[0];

matrix_b_set_upper_triangular(frag_b &f) {
1.0f; 3}
frag_b f) {

if (laneid & 0x04) return ;
out[matrix_b_get_row_idx ()]

Listing 3: The WMMA API can only perform load/store from
shared or global memory and lacks the ability to fill an TCU
fragment from constant memory or operate on sub-fragments.
This code shows how we enhance the NVIDIA WMMA API,
using knowledge of the fragment layout, to create an upper tri-
angular matrix and get the first column of a fragment for the
matrix_b fragment kind.

Although we can use the layout information to shuffle registers to
address (3), we opt instead to express the cast in terms of load/store
APIs available through the WMMA API. For example, to cast a ma-
trix in the matrix_a format to matrix_b format, we first store the
matrix into shared memory and then perform a load from memory
to matrix_b. Using our API extensions for fragment layout infor-
mation requires less block synchronization — which increases the
performance of our implementation by up to 5%. Since relying on
fragment layout information is not portable, we omit these results.

6.2 Optimizing CUB for Half Precision

CUB is a C++ template library that contains multiple algorithms
for the collectives. The CUB library contains the fastest [40, 41]
implementation for the reduction and scan collectives and is used
by libraries such as Thrust [5] as well as most deep learning frame-
works [8, 42, 43, 59, 67]. We compare against the latest release of
CUB [38] (version 1.8) and evaluate against different parameters
of the collectives. As an optimization, warp-level shuffle reduction
and scan are implemented in PTX within CUB for integer, float,
and double data types, since NVCC is currently unable to use the
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Figure 10: We evaluate the segmented reduction for the algo-
rithms presented on different segment sizes (between 16 and
230) for a fixed 239 element list. Through a combination of the
algorithms presented, for the range between 16 and 2>* we
are able to achieve throughput within 90% and 98% of ideal
throughput (the theoretical peak is 450 billion half precision el-
ements per second). The bar on top of the figure shows the best
performing algorithm for each range of segment sizes.

shuffle instruction’s predicate to guard against invalid peers [28,
44]. We observerved that CUB does not contain these shuffle-based
optimizations for half precision. To make the evaluations fair and
meaningful, we implement these optimization for the half precision
data type in CUB. The modified CUB is used for the evaluation to
provide a more aggressive base of comparison.

6.3 Warp- and Block-level Reduction and Scan

Theoretically (on V100) our warp-level TCU reduction algorithms
require less than one fourth of the cycles of the warp-level shuffle re-

duction. For example, consider performing a warp-level Reductionyse:

the warp-level reduction shown in Listing 2 requires 8 iterations
of 32 element reduction to reduce each segment. The total cycles
is therefore 256, since each shuffle instruction and addition takes
4 cycles. Our algorithm performs the reduction using two matrix
multiplications or 64 cycles — since each TCU WMMA matrix
multiplication requires 32 cycles. However, reduction is known to
be memory bound, with the ideal performance bounded by memory
copy speed.

We evaluate the TCU segmented reduction algorithms against
cub: :DeviceSegmentedReduce: : Sum by fixing the number of in-
put elements and varying the segment size (Figure 10). When the
segment size is less than 256, the 16N algorithm is used. The 16N
algorithm’s performance degrades for large segment sizes due to
its strided access pattern resulting in uncoalesced global memory
access. When the segment size is larger than 256, the 256N algo-
rithm is used, but again suffers from performance degradation after
segment size 21° due to low occupancy. When the segment size
is large (greater than 2!3) the block-level 256N reduction is used.
Figure 10 shows that our TCU implementation achieves more than
90% of the peak throughput for variable segment size and is always
better than CUB.

When the segment size is large and the number of segments is
small, the performance of both CUB and our implementation drops.
Since each segment gets mapped onto a block, a small number of
segments causes some SMs to be idle. For example when segment
size is 22, both CUB and our implementation achieve an occupancy
of around 0.25 and SM efficiency of around 40%. A better strat-
egy for these cases would be to assign multiple thread blocks to
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collaboratively reduce each segment when the size of the segments
is very large. This optimization can be achieved using CUDA 9’s
cooperative groups [45], but is outside the focus of this paper.

Our TCU implementation largely outperforms CUB’s device-
wide segmented reduction for different segment size. Through pro-
filing, we identified the major predictors of performance to be, in
the order of importance, the number of half-precision floating-point
instructions (inst_fp_16 in the NVProf [51] metrics), warp instruc-
tions (inst_inter_thread_communication), and integer instruc-
tions (inst_integer). We consistently find that our implementa-
tion’s half-precision instructions is approximately equal to the num-
ber of total elements (23') while CUB’s is much larger. Moreover,
CUB requires large number of integer and warp shuffle instructions
while our implementation uses no warp shuffle instructions and a
smaller number of integer instructions. This contributes to the 100x
speedup for segment size 16.

We examined the power consumption by measuring the average
power draw within the execution phase of the kernel using NVProf.
Based on these measurements, we find that our implementation
consumes 7.4 —22.3% less power compared to CUB across different
segment sizes. Again, this is because of the efficient use of the FP16
and INT ALUs as well as better SM and DRAM utilization. We note
that our algorithm leaves the general purpose ALUs idle, allowing
less contention on these units.

CUB provides a cub: : WarpReduce, applicable for segment sizes
16 and 32, to compute a parallel reduction of elements within a
warp. CUB also provides cub: :BlockReduce to perform reduction
within a block. These two primitives require users to partition the
data and construct the kernel. Since CUB’s device-wide segmented
reduction does not perform well for segment size smaller then 213,
we evaluate our TCU implementations against cub: : WarpReduce
and cub: :BlockReduce implementations, shown in Figure 11. The
cub: :WarpReduce implementation is tunable on block size, wheras
the cub: :BlockReduce implementation is tunable on block size,
thread coarsening factor, and reduction algorithms. We compare our
implementation against the best CUB implementation. We find that
our TCU implementations is still faster for segment size smaller than
1024, and is comparable to cub: :BlockReduce for the other cases.

For segmented scan, we evaluate the TCU algorithms against
Thrust’s implementation (inclusive_scan_by_key), since CUB
has no user visible API for segmented scan. The Thrust implementa-
tion utilizes CUB’s internal warp- and block-level scan to implement
the scan-by-key operation. We evaluate different segment sizes with
a fixed number of input elements — the results are shown in Fig-
ure 12. Thrust, consistent with previous work [17], has constant
performance irrespective of the segment size. Whereas, our scan
TCU implementations achieve more than 89% of the peak through-
put and is 3 faster than thrust for small segment sizes. We observe
lower power consumption compared to Thrust — observing it to be
either equivalent in power usage or up to 17% less. Our segmented
scan is not ideal for large segment sizes since, as explained in Sec-
tion 4, only a small number of blocks get launched and thus the GPU
is underutilized. This inefficiency can be remedied using the same
strategy described for reduction.

CUB provides cub: :WarpScan to compute a parallel scan of
data partitioned within a warp, and cub: :BlockScan within a block.
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Figure 13: A full reduction implementation based on the de-
scription in Section 4 achieves performance on par to CUB.

Similar to reduction, these two primitives require more program-
ming effort from the users to partition the data and construct the
kernel. The CUB scan implementations have the same tunable pa-
rameters as CUB’s reduction. We evaluate our TCU segmented scan
against the best cub: :WarpScan and cub: :BlockScan parameters,
shown in Figure 11. We can see that our TCU implementations are
still faster for small segment size, and are at least comparable to
cub: :BlockScan for other cases.

6.4 Grid-level Reduction and Scan

Unlike the warp- and block-level operations, this paper does not
attempt to optimize grid-level operations — opting to use a naive
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implementation for the grid-level collectives. The naive implementa-
tion involves multiple kernel launches. We include the evaluation re-
sults to show that even our naive grid-level implementation achieves
performance that is better or comparable to that of CUB and Thrust.

Number of Elemer

Figure 14: A full scan implementation based on the description
in Section 5 achieves performance comparable to CUB.

We compare against both CUB and Thrust for full reduction
(Figure 13), and scan (Figure 14). For both cases, our implementation
uses the 256N block-level algorithm. Even with our naive grid-level
implementation, we are able to mach the performance of CUB and
are considerably faster than the Thrust implementation. For reduction
and scan, the TCU implementation is slightly faster than CUB with
large input sizes being bounded by memory bandwidth and is within
98% (for reduction) of peek memory copy bandwidth. For scan, our
current unoptimized implementation uses CUB to reduce the partial
values (kernel 2 described in Section 5.3). Future implementations
would not use CUB, since it fails for inputs larger than 22! which
causes our implementation to fail as well.

7 RELATED WORK

The mapping of algorithms onto matrix multiplication has been well
studied [22, 30, 60, 68]. Similarly, both reduction and scan are well
studied from a performance and application [6, 7, 21, 29, 65] aspect
on a wide range of architectures and have been heavily evaluated
across GPU architectures [14, 16, 37, 64, 70]. To our knowledge
however, there has been no attempt at mapping either reduction or
scan in terms of matrix multiplication.

Considerable research has been done on the development of per-
formance portable compilers for reduction and scan kernels [2, 10,
13, 31, 66]. These compilers express the algorithms as systems of



alternative building blocks that are then composed and auto-tuned at
compile time for both the target architecture and the input character-
istics. These tools are synergistic with our technique, since we are
able to add our algorithm as another building block to implement
reduction or scan.

Previous work [11, 38, 39, 61, 70] has also shown that optimiza-
tions can be made to either avoid or hide the overhead of multi-kernel
launches. These optimizations would enable our grid-level opera-
tions to be competitive for large sizes when compared to state-of-the-
art methods. Other research looked at specific cases of scan, in [34]
the authors look at performing scan on tuples while minimizing
global reads and facilitating latency hiding.

Work describing NVIDIA’s Tensor Cores is scarce. In [26], the
authors use microbenchmarks to discern micro-architectural details
of the V100 architecture. This work was extended in [62] where
authors’ study expand on the micro-architectural study and show a
proposed NVIDIA TCU architecture. In [35, 20] the authors use half
precision and TCUs to implement iterative solvers. They use half
precision along with low quality solvers to compute the initial condi-
tions and then switch to both higher precision solvers for subsequent
iterations. The authors also examine the numerical error incurred
when using TCUs and half-precision for HPC workloads.

8 CONCLUSION

This paper leveraged the Tensor Core Units (TCUs) (a specialized
accelerator developed to optimize matrix multiplication for deep
learning) to implement both reduction and scan. We showed a novel,
simple, and efficient mapping of the reduction and scan primitives
onto TCUs. We believe we are the first to formulate these algorithms
to exercise the TCU. Unlike existing work which designs ASICs to
map reduction and scan onto hardware, we develop an algorithmic
solution to map both reduction and scan on existing TCUs. An algo-
rithmic solution is relevant when using preexisting TCU designs (as
is the case for the NVIDIA TCU). We also pointed out directions for
future API and architectural changes to relax some of the TCU con-
straints such as loading fragments from constant, extracting single
row or column, etc. — resulting in a simplified implementation.

We implemented the proposed algorithms onto V100 TCUs,
achieved up to 100x speedup for reduction and up to 3 x for scan,
and showed performance that rivals state of the art implementation
in the worst cases. We observed up to 22% less power consumption
for reduction and 16% for scan using NVPROEF. As a result of the
algorithms, we were able to make use of the otherwise idle TCUs—
enabling better GPU utilization for kernels that exercise the general
purpose ALUs.

Future work would leverage the techniques described in this
paper to map more algorithms and functions onto TCUs. We are
specifically interested in transcendental and special functions, since
the NVIDIA special function units have been observed to be the
bottleneck in HPC applications. We also want to express neural
network layers in terms of TCUs, where some layer implementations
and layer fusion opportunities would be enabled by our work: such as
the computation of variance in batch norm [23, 24] or the evaluation
of special functions in activation layers.
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