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ABSTRACT 
Real-time image-processing applications impose severe design 

constraints in terms of area and power. Examples of interest 

include retinal implants for vision restoration and on-the-fly 

feature extraction. This work addresses the design of image-

processing circuits using stochastic computing techniques. We 

show how stochastic circuits can be integrated at the pixel level 

with image sensors, thus supporting efficient real-time 

(pre)processing of images. We present the design of several 

representative circuits, which demonstrate that stochastic designs 

can be significantly smaller, faster, more power-efficient, and 

more noise-tolerant than conventional ones. Furthermore, the 

stochastic designs naturally produce images with progressive 

quality improvement. 

Categories and Subject Descriptors 

B.2 Arithmetic and Logic Structures, B.6 Logic Design, C.3 

Special-Purpose and Application-Based Systems. 

General Terms 

Design. 

Keywords 

Emerging Technologies, Image Processing, Real-Time 

Computing, Stochastic Computing, Vision Chips. 

 

1. INTRODUCTION 
Advances in semiconductor technology have enabled many 

exciting new applications of embedded computers. They have also 

exposed problems and opportunities that cannot be easily 

addressed using conventional design approaches. An example that 

motivates our work is the provision of retinal implants for the 

visually impaired ‎[15]. This involves designing an integrated 

circuit (IC) chip that can be surgically placed on a dysfunctional 

retina to sense images (or process images sent wirelessly from an 

external camera) and convert an array of pixel streams to streams 

of neural-style electrical signals that stimulate useful visual 

sensations. The implanted IC is linked to an external power supply 

and must not dissipate more than a few mW/mm2 to avoid heat 

damage to the eye ‎[17].  
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Figure 1. Image-processing system employing a vision chip. 

Due to the huge amounts of data in pixel streams, real-time 

image processing usually requires extensive hardware and/or 

software resources ‎[8]. If the hardware support is sufficiently 

small, some of it can be integrated with the imaging-sensing 

circuits to form a so-called‎“vision chip,” as indicated in  Figure 1. 

Such chips serve as the preprocessing front end of an image-

processing system ‎[4] ‎[14].  

Vision chips are loosely classified as analog or digital (pulse 

domain), depending on the type of circuitry used in the 

preprocessing stage to convert the sensed analog input signals to 

digital form for final processing. Typical preprocessing circuits 

are analog-to-digital converters (ADCs), noise filters, and edge 

detectors ‎[3] ‎[8] ‎[11]. These steps may require many operations 

per pixel, and consume most of the power of the system ‎[21]. The 

design of vision chips is very challenging since it involves 

complex trade-offs among chip area, power, speed and accuracy. 

It also requires some degree of parallel processing, which can be 

at the level of individual pixels, groups of pixels, or the overall 

system ‎[21].  

We propose to use stochastic computing (SC) for real-time 

image preprocessing.   This is a method of computing with bit- 

streams  at  very  low  hardware  cost ‎[2]‎[7].   A  stream of N bits 

containing N1 1s and N  N1 0s denotes the stochastic number 

(SN) x = N1/N, which is treated as a probability. For example, 

0111, 1101, and 10110111 all denote x = 3/4 = 0.75. Stochastic 

circuits are small and so have very low power requirements. For 

example, multiplication of two N-bit SNs x1 and x2 to form the 

arithmetic product x1  x2 can be done in N clock cycles by means 

of a single AND gate. Besides low area and power, SC has the 

advantages of high error tolerance (bit flips have little impact on 

signal probability) and support for massive, low-level parallelism. 

Its main disadvantage is the need for very long bit-streams to 

achieve high precision. However, as we will show, this problem 

can be greatly mitigated by exploiting a special property of SC we 

call progressive precision, where result quality gets better as the 

computation proceeds.  

SC and real-time image processing share some key properties. 

They both handle streaming analog data (image intensities or 

probabilities), process the data digitally, and have good noise 

tolerance. Several proposed vision chips encode the sensed light 

signals using pulse-frequency modulation (PFM) ‎[9] ‎[11] ‎[20]. 



 

 

This means that pixel information is conveyed by the frequency of 

a pulse train, as in biological neural networks and SC circuits. SC 

thus has the potential to meet most of the challenging requirements 

of the retinal implant application mentioned earlier: streaming 

neural-style data, very small circuit size, extremely low power, and 

insensitivity to noise.  

Although known for years ‎[7], SC has only recently gained 

attention with the emergence of applications that can take full 

advantage of its unique features, such as support for massive 

parallelism. A notable example is decoding the low-density parity 

check (LDPC) codes employed in the IEEE WiFi and other 

communication standards ‎[10]; this is an application that requires 

massive amounts of fast, but relatively simple, parallel processing.  

Naderi et al. ‎[16] have used SC to implement an LDPC decoder 

chip that has performance comparable to conventional (weighted-

binary) designs, but is significantly smaller.  Li and Lilja ‎[12] and 

Qian et al. ‎[18] have shown that SC can outperform binary 

computing in some processing tasks involving stored images. Ma 

et al. ‎[13] show that SC is useful in fault-tolerant image processing. 

To apply SC to stored images, data conversion between the 

weighted-binary and stochastic domains is necessary. This 

conversion is costly; in some cases, it can consume up to 80 

percent of SC circuit area ‎[18]. As we will show, real-time image 

processing avoids much of this cost. The use of SC in real-time 

vision chips was briefly discussed by Hammadou et al. in 2003 ‎[9], 

but otherwise has received very little attention. SC application has 

also been hindered by lack of a general design methodology, and 

by limited understanding of its underlying theory.   

This paper presents designs for various image-processing tasks 

like real-time edge detection and gamma correction. The new 

designs are evaluated by emulation on FPGAs under normal and 

noisy conditions. The results show that SC can provide high 

performance and huge savings in area and power. They also 

illustrate SC’s‎ progressive precision and noise-tolerance 

properties. The main contributions of the paper are: 

1. Demonstration of the suitability of SC for real-time image 

processing with demanding design constraints. 

2. Novel stochastic circuits that are far smaller and more 

efficient than both their conventional counterparts and 

(where they exist) previous SC designs. 

3. Two orthogonal methods of producing images with 

progressive quality at minimal cost. 
 

2. STOCHASTIC COMPUTING 
We begin by reviewing stochastic computing and its relevant 

properties. As noted already, SC circuits tend to be very small. 

Figure 2a shows a stochastic adder ‎[7] that implements the scaled 

addition z = (x1 + x2)/2. Scaling is needed to ensure that the sum 

lies in the interval [0,1]. This   SC adder is just a 2-way multiplexer 

with a random bit-stream r of probability value 1/2 applied to its 

control (select) input. 

A typical SN x has many different representations, and the 

ones chosen for the various inputs of an SC circuit usually need to 

be uncorrelated and derived from independent stochastic number 

generators (SNGs). Correlated inputs are generally believed to 

produce inaccuracies in the computation. A simple example is seen 

in the use of an AND gate to multiply SN x by itself to obtain x2. If 

identical bit-streams are used for the two copies of x (implying 

maximum correlation), the AND gate produces x instead of x2, a 

large error. So circuits with correlated inputs are rarely used in the 
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Figure 2. (a) Stochastic adder and (b) subtracter. 

SC literature. However, we observe that correlation does not 

necessarily lead to inaccuracy, if properly managed. In particular, 

in circuits like the SC adder, inputs can be correlated without 

affecting the accuracy of the result. This can greatly mitigate the 

complications of random number generation. 

In some cases, correlated inputs can change the functionality of 

a circuit to another, and perhaps more desirable, operation. Figure 

2b shows an XOR gate that, assuming independent inputs, 

performs the function  

  z = x1 (1  x2) + x2  (1  x1) 

However, when fed with correlated inputs where x1 and x2 have 

maximum overlap of 1s, we can show that the circuit computes z = 

|x1  x2|, i.e., it acts as a type of subtracter. As we will see, this 

operation is very useful in SC image processing. 

The major drawback of SC is that very long bit-streams are 

required for high-precision calculations. Precision is defined as the 

number of bits needed to represent a given number x in 

conventional weighted-binary format. An n-bit binary number 

maps to an SN of length of N = 2n. Hence, the SN has precision of 

roughly log2 N, and takes N = 2n clock cycles to generate or 

process. This overhead makes SC impractical for most high-

precision digital computations. About 8 bits of precision suffice for 

most image-processing tasks, implying a maximum SN length of 

28 = 256 bitsa reasonable size. 

The speed of stochastic circuits can be increased by exploiting 

the progressive precision properties of SC: if properly chosen, the 

first few bits of an SN can yield a rough approximation to the final 

number. For instance, consider the following bit-stream 

representing the number 9/16: 

0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 1 

The first two, four and eight  bits, i.e., 01, 0110 and  01101100, all 

represent  the number 1/2, which is a good approximation of the 

final number 9/16. This progressive precision property of SC can 

be exploited if a decision can be made quickly from a particular 

image. For example, in the edge-detection application discussed 

later, many sharp edges are detected as early as four clock cycles 

into the computation. 

Stochastic image-processing circuits have been 

proposed ‎[12] ‎[18] that are smaller than conventional designs, but 

are not particularly efficient. As noted above, the use of many 

conversion units degrades the performance of those designs. Our 

approach integrates format conversion into stochastic image 

processors in a way that minimizes the overhead of conversion 

circuits. Even if conversion costs are ignored, our designs are 

smaller and more efficient than those of ‎[12] and ‎[18]. 

3. SYSTEM OVERVIEW 
Vision chips vary widely in how their sensors and processing 

circuits are laid out. In the simplest form, one processor handles all 

the pixels in series and no parallel processing occurs. At the other 

extreme, each pixel has a processing element (PE) of its own, 
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Figure 3. Top-level view of an SC-based vision chip and its 

stochastic processing elements (SPEs).  

providing maximum parallelism. Since conventional digital PEs 

can be large, this approach does not scale well ‎[21]. For real-time 

applications, one processor per pixel is desirable and, as we show, 

is achievable using stochastic computing techniques.   

We propose a vision chip with maximum parallelism using 

stochastic processing elements (SPEs) that are very small and scale 

well. Our designs are also applicable to cases where processing 

circuits are shared  among  pixels.  Figure 3 shows a high-level 

view of the proposed chip and its SPEs. For clarity, a 44 pixel 

array is shown, but it is possible to have many more pixels on chip. 

In addition to the SPEs, the chip has shared resources that manage 

random number generation and include a few counters based on 

LFSRs (linear feedback shift-registers). The area cost of these 

resources is minor since they are small and their cost does not 

change with the pixel count. 

As Figure 3 shows, vision chips have image sensors that 

convert the perceived light intensity to an analog electrical voltage. 

To enable digital processing, this analog signal must be converted 

to digital form using a conventional ADC or, in the SC case, an 

analog-to-stochastic converter. As noted earlier, the cost of an 

analog-to-stochastic converter is very similar to that of a 

conventional ADC, which is depicted in Figure 4. In the 

conventional case, the analog voltage from the sensor is converted 

to a digital number using a ramp-compare technique. This requires 

an analog comparator fed by the sensor voltage, and a ramp 

voltage generated by a counter and a digital-to-analog converter 

(DAC). The comparator directly triggers a second counter which 

produces the desired digital output. In the SC case, the sensor 

voltage is converted to a stochastic number by comparing it to a 

random voltage generated by an LFSR-based counter and a DAC. 

A stochastic number appears at the output of the comparator and 

can then be processed by an application-specific stochastic circuit, 

such as an edge detector. The second counter is used to convert the 

final result to weighted binary form.  It should be clear from Figure 

4 that analog-to-stochastic conversion imposes little overhead as it 

employs essentially the same ADC circuits found in any digital 

vision chip.  

Although analog comparators are well understood, they still 

present some circuit design challenges; for instance, low-area 

comparators are susceptible to noise. It is feasible to place 

comparators of suitable quality and size at every pixel ‎[6]. In 

conventional digital image processors, a noise reduction step such 

as median filtering is needed ‎[12]. In the proposed SC vision chip, 

however, the impact of noise is minimal thanks to the error 

tolerance of stochastic numbers, and a separate noise suppression 

step is unnecessary. 

4. IMAGE PROCESSING OPERATIONS 
This section discusses two basic image preprocessing categories, 

namely pixel-wise operations and windowing operations, examples  

Sensing

circuit
+

-
Digital 

number
Counter

Analog

comparator

SC case: Implemented 

by LFSR

DAC

Stochastic circuit for edge-detection, etc. inserted here

Ramp

voltage

Analog-to-

digital 

converter 

(ADC)

Counter

SC case: Replaced by 

random voltage

 
Figure 4. Conventional ADC circuit for a vision chip with the 

changes needed for analog-to-stochastic conversion. 

of which are implemented later. We then present two ways to 

produce images with progressive quality improvement, which 

greatly speed up stochastic processing. 

4.1 Basic Operations 
Pixel-wise operations modify a pixel’s intensity value x 

independent of the values at other pixels. They typically implement 

a real-valued function f(x) that is used to adjust  intensity values. A 

well-known example is gamma correction, which is used to 

compensate for non-linearities  in recording or display devices, or 

to increase pixel contrast ‎[8]. One of the simpler gamma-correction 

functions is f(x) = x0.45. To synthesize stochastic circuits that 

implement functions like f(x), we use the synthesis method of ‎[1]. 

This approach produces efficient circuits for a broad class of 

arithmetic functions. 

A second category of image-processing operations of concern 

are windowing operations, where a weighted moving-average 

operation is performed on a small window of pixels, either to 

extract features of the image or to enhance its quality. Examples of 

such operations are edge detection, sharpening and blurring ‎[8]. 

The pixel windows are typically of size 2  2, 3  3, or 5  5. In 

order to design operations of this type, we mainly use the 

components of Figure 2. An m-to-1 multiplexer with a random 

select input performs averaging operations of the form   
 

 
            ; if negative weights are present, 

subtraction can be implemented by XOR gates.  

4.2 Spatial Progressive Quality Improvement 
Generating images that progressively improve is an important task 

in image processing because it enables a trade-off between 

accuracy and computation that can be exploited in several ways. 

Image standards such as JPEG2000 ‎[5] encode images of various 

qualities simultaneously. A conventional method of reducing the 

quality of an image is to reduce its number of pixels, i.e., its 

resolution. Figure 5 shows an image with several resolution levels; 

clearly, the quality diminishes as the resolution decreases.  

Processing images with multiple resolutions imposes some 

computational overhead. However, we show by an example, that in 

the SC case, this overhead is minimal. Assume that a given image 

is to be processed at its original resolution, and at a lower-quality 

version with 16 times less resolution. In the latter case, intensity 

signals from 16 neighboring pixels of the original image are 

averaged to produce a super-pixel. 

Figure 6 shows this averaging process implemented by a 16-to-

1 multiplexer. This circuit processes each input individually, and 

records its results in the corresponding counter. Meanwhile, it 
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Figure 5. An image at four different resolution levels: (a) 400×400, (b) 

100×100, (c) 50×50, and (d) 25×25 pixels. 

performs the same computation on the low-resolution super-pixel 

and records that result in a separate counter. As seen in the figure, 

the overhead of a super-pixel computation is the additional counter, 

implying a very low cost. 

4.3 Temporal Progressive Quality 

Improvement 
As noted earlier, stochastic numbers have the progressive precision 

property, meaning that short sub-sequences of an SN can provide 

low-precision estimates of its value. This property can also be used 

to obtain images of different qualities because we can have SN-

encoded pixels with different precisions. This approach is 

orthogonal to the previous spatial-resolution method, and, since it 

is an inherent property of SC, it comes at essentially no cost. One 

simply uses the values appearing at the output counters of Figure 6 

at successive points of time. 

Figure 7 shows how this property can be exploited in image 

processing. An edge-detection operation is being performed on an 

image. The input image has 8 bits of precision (the precision of an 

image corresponds to its gray-scale resolution ‎[8]), and hence 

requires SN bit-streams of length 256. However, if the output 

image is checked at different points of time, it can be seen that as 

early as 4 clock cycles into the computation, many edges of the 

input image are detected, and after 32 clock cycles, almost all the 

edges are detected.  

5. STOCHASTIC EDGE DETECTION 
Edge detection is useful in image processing and computer vision 

because it allows objects to be extracted from an image by 

highlighting their edges. In the retinal implant application, a real-

time edge-detecting circuit generates high-contrast images of the 

environment that greatly help a vision-impaired person to navigate 

correctly and avoid obstacles. We now consider the design of high-

efficiency SC circuits for this task.  

5.1 Circuit Design 
Many edge-detection algorithms are known ‎[8], and a few have 

been implemented with (non-real-time) SC ‎[12]. Here we use the 

Roberts cross algorithm ‎[8].  It computes a moving average on a 

window of size 2  2 for each pixel xi,j at row i and j of the image, 

and generates an output value zi,j   according to the following 

formula. 

                                                 (1) 
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Figure 6. Stochastic processing of 16 pixels individually and as a 

super-pixel.  

(a) (b) (c) (d)

Figure 7. Progressive precision results for edge detection: (a) input 

image; output image after (b) 4, (c) 32, and (d) 256 clock cycles.  

A stochastic implementation of this operation has been proposed 

by Li and Lilja ‎[12], but it uses relatively large sequential circuits 

to approximate the absolute value function. Instead, we use the 

simple combinational SC components of Figure 2, which lead to a 

design that is more than 20 times smaller than that of ‎[12], but has 

similar (or even better) performance. Figure 8a shows the proposed 

stochastic circuit for edge detection. It uses just two XOR gates to 

implement the subtractions in (1) and a multiplexer to perform the 

addition. As discussed, the inputs must be correlated, which is 

assured by assigning them a common random number source. The 

multiplexer’s‎ select input is fed with a random input r, which is 

produced at minimal cost since it is shared among the SPEs. In 

contrast, the corresponding binary design (Figure 8b), assuming 8-

bit precision, contains several big arithmetic units such as adders 

and subtracters. 

 As proof-of-concept, we implemented and validated the SC 

edge-detection circuit (and the other examples in this paper) on a 

Xilinx Virtex-5 FPGA chip. Figure 9 illustrates the FPGA board 

(XUPV5-LX110T) used for our experiments, along with a 

representative image-processing task. It is important to note that 

the FPGA implementation was only used to verify the functionality 

of the circuits, and not for performance comparison. The output 

generated by the circuit is validated by comparing it to an expected 

output generated via conventional approaches. 

In order to compare the proposed edge-detection design with 

previous work, we used the SIS synthesis CAD tools ‎[19]. Table 1 

summarizes the results. All the numbers are estimated values based 

on a generic library of cells using 0.35m CMOS technology. The 

delay of each circuit is obtained by multiplying the clock period by 

the number of cycles required to perform the operation. The 

conventional binary design shown in Figure 8b implements (1) in a 

single clock cycle. The SC designs, on the other hand, require 256 

cycles for the full 8 bits of precision. The dynamic power 

consumption of the circuits are also estimated using the SIS 

tools ‎[19]. 

The results reveal that the proposed edge-detection circuit is 

strictly better than the previous SC design ‎[12]. Our SC design is 

about 30 times smaller than the conventional designs, and only 3 

times slower.  From the area-delay numbers, we see that the SC 

design has a significant cost advantage. The dynamic power 

consumption of each circuit is also reported in Table 1, and show 

that for a given clock frequency (in this case 20MHz), SC has 

much lower power consumption. However, since a stochastic 

circuit with fixed precision runs for a longer time, its energy 
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Figure 8. Edge detectors: (a)  stochastic  and (b) conventional designs.  



 

 

 

Figure 9. FPGA setup for emulating image-processing tasks, in this 

case, gamma correction.  

consumption eventually becomes higher than that of a 

conventional design. We do not report the leakage power/ energy 

of each circuit, but since leakage power is directly proportional to 

area, we can conclude that the leakage power of SC circuits is 

lower than the conventional case. 

Table 1. Synthesis results for the edge detection circuits.   

Implementation 
Area 

(m
2
) 

Delay 

(ns) 

Power 
@20MHz 

(W) 

Energy 
(nJ) 

Area × 
Delay 

(m
2
×ps) 

Conventional 
weighted-binary 

6928 19.49 7767.9 0.39 135.03 

Previous SC 

design ‎[12] 
4312 1300 2213.7 28.34 5607.67 

SC design 
proposed here 

200 58.88 88.7 1.14 11.78 

 

5.2 Error-Tolerant Behavior 
Stochastic circuits are inherently noise tolerant, and their 

performance is not significantly degraded if the inputs contain 

noise, or even if the circuit components are noisy and 

unreliable ‎[12] ‎[18]. This is potentially a huge advantage, since 

pixel-level circuits need to be extremely small, with electrical 

characteristics that are difficult to control precisely.  In this section, 

we demonstrate this benefit by a qualitative comparison between 

our SC-based edge detector and a conventional binary 

implementation when a noisy image is perceived by the sensors.  

We model input noise as a Gaussian random variable with 

mean value 0 and standard deviation , which is added to the 

voltage signal generated by the sensor, i.e.,  right before the 

analog-to-digital or analog-to-stochastic conversion stage. We 

define the noise level as the ratio of  to the full voltage swing of 

the sensor, so a 10% noise level means that the noise is 1/10 of the 

voltage range of the sensor. 

Figure 10 illustrates the simulated performance of the three 

design methods at various noise levels. The performance of the 

conventional weighted-binary approach significantly degrades as 

the noise level reaches 5%; at noise levels of 10% and 20%, the 

output images become useless. The second implementation again 

employs a conventional binary approach, but with noise reduction 

implemented by a median filter ‎[8]. This costly noise-reduction 

step improves the results, but significant quality degradation is still 

seen at higher noise levels. On the other hand, the SC 

implementation is almost unaffected by   noise and is able to detect 

the edges even in the 20% noise case. The impact of noise on the 

SC circuit appears as a gray background, a result also seen in ‎[18]. 

5.3 Progressive Precision 
Also of interest is the performance of the edge-detection circuit 

when producing images with progressive quality improvement.  

The examples in Figure 7 suggest that the runtime of the edge-

detection circuit can be further reduced (by a factor of 8), without 

compromising accuracy. This implies that edge detection requires 
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Figure 10. Edge-detection performance for three implementation 

methods with noise levels of (a) 5%, (b) 10% and (c) 20%.  

less precision (than the original 8 bits), so for a fair comparison, we 

also implemented a low-precision version of the conventional edge 

detection circuit. As can be seen from Table 2, the stochastic 

design is strictly better than the conventional one. Also, the 

stochastic edge-detection is so efficient that can operate in real-

time (15 frames per second) at 1nW power consumption. This 

number might be further reduced by switching to sub-threshold 

technologies. 

Table 2. Synthesis results for low-precision edge-detection circuits. 

Implementation 
Area 

(m
2
) 

Delay 

(ns) 

Power 
@20MHz 

(W) 

Energy 
(nJ) 

Area × 
Delay 

(m
2
×ps) 

Conventional 
weighted-binary 

4344 7.66 5156.8 0.26 33.28 

SC design 
proposed here 

200 7.36 88.7 0.14 1.47 

6. OTHER IMAGE-PROCESSING 

OPERATIONS 
Besides edge detectors, we designed several other stochastic 

image-processing circuits and evaluated their performance 

compared to alternative designs. We used the synthesis method 

of ‎[1] to obtain the gamma-correction circuit in Figure 11a. A flip-

flop is used in this design in order to produce a second uncorrelated 

copy of the input bit-stream. The function   implemented 

approximates the target function zi,j = xi,j
0.45 but produces 

acceptable results, as seen in Figure 9. Figure 11b shows a 

conventional binary implementation of the same function. Like our 

edge-detection circuit, the stochastic gamma-correction circuit has 

a random input of probability 0.25 produced by a vision chip’s 

shared resources. 

Table 3 shows the synthesis results of our gamma-correction 

circuit, along with a conventional design of the same precision, and 

a previous SC design ‎[18]. The design of ‎[18] has better accuracy, 
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Figure 11. Gamma correctors: (a) stochastic and (b) conventional. 



 

 

Table 3. Synthesis results for gamma-correction, blurring, and 

gradient calculation circuits. 

Task 
Design 
method 

Area 

(m
2
) 

Delay 

(ns) 

Power 
20MHz 

(W) 

Energy 
(nJ) 

Area × 
Delay 

(m
2
×ps) 

G
a

m
m

a
 

c
o

rr
e

c
ti

o
n

 

Conventional 
binary 

10576 27.2 21486 1.07 287.77 

Previous SC 
method ‎[18] 

1416 5365 970.3 49.68 7597.9 

Our SC 
method 

168 15.4 55.8 0.71 2.58 

B
lu

rr
in

g
 Conventional 

binary 
19464 32.6 13196 0.66 634.92 

Our SC 
method 

664 589 433.4 5.55 390.96 

G
ra

d
ie

n
t 

c
a

lc
u

la
ti

o
n

 

Conventional 
binary 

1520 3.4 716.6 0.04 5.20 

Our SC 
method 

72 51.2 26.9 0.34 3.69 

but is much costlier. The table also includes synthesis results for 

two other image-processing tasks, namely, blurring and gradient 

calculation. These results are consistent with those we obtained for 

edge detection. 

7. CONCLUSIONS 
We have shown that stochastic computing (SC) is practical for 

high-performance vision chips. Complex image-processing tasks 

can be implemented with only a few gates, thus enabling massively 

parallel processing at the pixel level and real-time operation. We 

presented designs for stochastic image-processing circuits that 

outperform existing designs (both conventional and SC) in most 

aspects. In particular, we have designed an edge-detection circuit 

that is strictly better than equivalent conventional designs. This 

highly efficient circuit seems ideal for vision chips and retinal 

implants. We also designed other representative image-processing 

circuits and made detailed comparisons with alternative 

implementations. We conclude that stochastic circuits are, in 

general, much smaller than conventional designs, and are much 

more efficient in terms of power consumption and area-delay 

product.  

Furthermore, we demonstrated two different ways to process 

images with progressive quality improvement at minimal cost 

overhead. These properties compensate‎ for‎ SC’s‎ longer 

computation times. We successfully implemented and validated the 

discussed image-processing tasks on an FPGA development 

system. Finally, we showed that unlike conventional designs, the 

SC circuits can process very noisy images with almost no 

performance degradation.   

8. ACKNOWLEDGEMENTS 
This work was supported by Grant CCF-1017142 from the U.S. 

National Science Foundation. 

9. REFERENCES 
[1] A.‎Alaghi‎&‎ J.P.‎Hayes,‎ “A‎ spectral‎ transform‎approach‎ to‎

stochastic circuits,”‎ Proc. Intl. Conf. Computer Design, 

pp.315-321, 2012. 

[2] A.‎Alaghi‎&‎ J.P.‎Hayes,‎ “Survey‎of‎ stochastic computing,”‎

to appear in ACM Trans. Embedded Computing Systems, 

2012. 

[3] F. Andoh et al.,‎ “A‎digital‎pixel‎ image‎sensor‎ for‎ real-time 

readout,”‎ IEEE Trans. Electron. Dev, 47, pp. 2123-2127, 

2000. 

[4] Centeye‎ Inc.‎ “Introduction‎ to‎ current‎Centeye‎ vision‎ chips” 

http://centeye.com/technology/vision-chips/, Feb. 2011. 

[5] C. Christopoulos et al.,‎ “The‎ JPEG2000‎ still‎ image‎ coding‎

system:‎ an‎ overview,”‎ IEEE Tran. Consumer Electronics, 

IEEE Transactions on , 46, 4, pp. 1103-1127, 2000. 

[6] P. Dudek and P.J.‎Hicks,‎“A‎general-purpose processor-per-

pixel‎analog‎SIMD‎vision‎chip,”‎IEEE Trans. Ccts. & Sys. I,  

52, pp.13-20, 2005. 

[7] B.R.‎ Gaines,‎ “Stochastic‎ computing‎ systems,”‎Advances in 

Information Systems Science, 2, pp. 37-172, 1969. 

[8] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 

2nd ed., Prentice Hall, 2002. 

[9] T. Hammadou et al.,‎“A‎96‎×‎64‎intelligent‎digital‎pixel‎array‎

with extended binary stochastic arithmetic,” Proc. Intl. Symp. 

Ccts. & Sys. (ISCAS), pp. IV-772–IV-775, 2003. 

[10] IEEE, Standard 802.11n for Info. Technology Telecommun- 

ications & Info. Exchange between Systems Local & 

Metropolitan Area Networks.  http://standards.ieee.org, 2009. 

[11] K. Kagawa et al.,‎“Pulse-domain digital image processing for 

vision chips employing low-voltage operation in deep-

submicrometer‎ technologies,”‎ IEEE Jour. Sel. Topics in 

Quantum Electronics, 10, pp. 816-828, 2004. 

[12] P. Li and D.J. Lilja, “Using stochastic computing to 

implement digital image processing algorithms,” Proc. Intl. 

Conf. Computer Design, pp. 154-161, 2011. 

[13] C. Ma et al.,‎ “High‎ fault tolerant image processing system 

based on stochastic computing,”‎Proc. Intl. Conf. Computer 

Science & Service System, pp. 1587-1590, 2012. 

[14] A. Moini, Vision Chips, Kluwer, 2000. 

[15] W. Mokwa, “Retinal implants to restore vision in blind 

people,”‎Proc. Transducers, pp. 2825-2830, Beijing, 2011.  

[16] A. Naderi et al.,‎ “Delayed‎ stochastic‎ decoding‎ of LDPC 

codes,”‎IEEE Tran. Signal Proc., 59, pp. 5617-5626, 2011. 

[17] N.L. Opie et al.,‎“Heating‎of‎the‎eye‎by‎a‎retinal‎prosthesis:‎

modeling, cadaver and in vivo studies,”‎IEEE Trans. Biomed. 

Engin., 59, pp. 339-345, 2012.  

[18] W. Qian et al.,‎ “An‎ architecture‎ for‎ fault-tolerant 

computation‎with‎stochastic‎logic,”‎IEEE Trans. Comp., 60, 

pp.93-105, 2011. 

[19] E.M. Sentovich, et al.,‎“SIS:‎A‎system for sequential circuit 

synthesis,”‎ Univ.‎ of‎ California,‎ Berkeley,‎ Tech.‎ Report‎

UCB/ERL M92/41, Electronics Research Lab, 1992. 

[20] F. Taherian & D.‎Asemani,‎ “Design‎ and‎ implementation‎of‎

digital image processing techniques in pulse-domain,”‎Proc. 

Asia Pacific Conf.  Ccts. & Sys. (APCCAS), pp. 895-898, 

2010. 

[21] H. Yamashita & C.G.‎Sodini,‎“A‎CMOS‎imager‎with‎a‎pro-

grammable bit-serial column-parallel SIMD/MIMD 

processor,”‎ IEEE Trans. Electron. Dev., 56, pp. 2534-2545, 

2009.

 

http://standards.ieee.org/

