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Abstract

As user demand scales for intelligent personal assistants
(IPAs) such as Apple’s Siri, Google’s Google Now, and
Microsoft’s Cortana, we are approaching the computational
limits of current datacenter architectures. It is an open ques-
tion how future server architectures should evolve to enable
this emerging class of applications, and the lack of an open-
source IPA workload is an obstacle in addressing this ques-
tion.

In this paper, we present the design of Sirius, an open
end-to-end IPA web-service application that accepts queries
in the form of voice and images, and responds with natu-
ral language. We then use this workload to investigate the
implications of four points in the design space of future
accelerator-based server architectures spanning traditional
CPUs, GPUs, manycore throughput co-processors, and FP-
GAs. To investigate future server designs for Sirius, we de-
compose Sirius into a suite of 7 benchmarks (Sirius Suite)
comprising the computationally intensive bottlenecks of Sir-
ius. We port Sirius Suite to a spectrum of accelerator plat-
forms and use the performance and power trade-offs across
these platforms to perform a total cost of ownership (TCO)
analysis of various server design points. In our study, we
find that accelerators are critical for the future scalability
of IPA services. Our results show that GPU- and FPGA-
accelerated servers improve the query latency on average by
10x and 16x. For a given throughput, GPU- and FPGA-
accelerated servers can reduce the TCO of datacenters by
2.6x and 1.4, respectively.
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1.

Apple’s Siri [1], Google’s Google Now [2] and Microsoft’s
Cortana [3] represent a class of emerging web-service appli-
cations known as Intelligent Personal Assistants (IPAs). An
IPA is an application that uses inputs such as the user’s voice,
vision (images), and contextual information to provide assis-
tance by answering questions in natural language, making
recommendations, and performing actions. These IPAs are
emerging as one of the fastest growing Internet services as
they have recently been deployed on well known platforms
such as i0S, Android, and Windows Phone, making them
ubiquitous on mobile devices worldwide [4]. In addition, the
usage scenarios for IPAs are rapidly increasing with recent
offerings in wearable technologies such as smart watches [5]
and smart glasses [6]. Recent projections predict the wear-
ables market to be at 485 million annual device shipments
by 2018 [7]. This growth in market share, coupled with the
fact that the design of wearables is heavily reliant on voice
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and image input, further indicates that rapid growth in user
demand for IPA services is on the horizon.

IPAs differ from many of the web-service workloads
currently present in modern warehouse-scale computers
(WSCs). In contrast to the queries of traditional browser-
centric services, IPA queries stream through software com-
ponents that leverage recent advances in speech recognition,
natural language processing and computer vision to provide
users a speech-driven and/or image-driven contextually-
based question-and-answer system [8]. Due to the compu-
tational intensity of these components and the large data-
driven models they use, service providers house the required
computation in massive datacenter platforms in lieu of per-
forming the computation on the mobile devices themselves.
This offloading approach is used by both Apple’s Siri and
Google’s Google Now as they send compressed recordings
of voice command/queries to datacenters for speech recogni-
tion and semantic extraction [9]. However, datacenters have
been designed and tuned for traditional web services such
as Web Search and questions arise as to whether the cur-
rent design employed by modern datacenters, composed of
general-purpose servers, is suitable for emerging IPA work-
loads.

IPA queries require a significant amount of compute re-
sources compared to traditional text-based web services such
as Web Search. As we show later in this work, the computa-
tional resources required for a single leaf query is in excess
of 100x more than that of traditional Web Search. Figure 1
illustrates the scaling of compute resources in a modern dat-
acenter required to sustain an equivalent throughput of IPA
queries compared to Web Search. Due to the looming Scal-
ability Gap shown in the figure, there has been significant
interest in both academia and industry to leverage hardware
acceleration in datacenters using various platforms such as
GPU, manycore co-processors and FPGAs to achieve high
performance and energy efficiency. To gain further insight
on whether there are sufficient acceleration opportunities for
IPA workloads and what the best acceleration platform is,
several challenges need to be addressed, including:

1. Identifying critical compute and performance bottlenecks
throughout the end-to-end lifetime of an IPA query;

2. Understanding the performance, energy and cost trade-
offs among popular accelerator options given the charac-
teristics of IPA workloads;

3. Designing future server and datacenter solutions that can
meet the amount of future user demand while being cost
and energy efficient.

However, the lack of a representative, publicly available,
end-to-end IPA system proves prohibitive for investigating
the design space of future accelerator-based server designs
for this emerging workload. To address this challenge, we
first construct an end-to-end standalone IPA service, Sir-
ius, that implements the core functionalities of an IPA such
as speech recognition, image matching, natural language
processing and a question-and-answer system. Sirius takes
as input user dictated speech and/or image(s) captured by
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a camera. There are three pathways of varying complex-
ity through the Sirius back-end based on the nature of the
input query. A voice command primarily exercises speech
recognition on the server-side to execute a command on
the mobile device. A voice query additionally leverages a
sophisticated natural language processing (NLP) question-
and-answer system to produce a natural language response
to the user. A voice and image question such as “When does
this restaurant close?” coupled with an image of the restau-
rant, also leverages image matching with an image database
and combines the matching output with the voice query to
select the best answer for the user. We have constructed Sir-
ius by integrating three services built using well-established
open source projects that include techniques and algorithms
representative of those found in commercial systems. These
open projects include CMU’s Sphinx [10], representing the
widely-used Gaussian Mixture Model based speech recog-
nition, Kaldi [11] and RWTH’s RASR [12], representing
industry’s recent trend toward Deep Neutral Network based
speech recognition, OpenEphyra [13] representing the-state-
of-the-art question-and-answer system based on IBM’s Wat-
son [14], and SURF [15] implemented using OpenCV [16]
representing state-of-the-art image matching algorithms
widely used in various production applications.

With this end-to-end workload in hand, we perform an
in-depth investigation of the viability of various accelera-
tion strategies, and provide insights on future datacenter and
server designs for this emerging workload. Specifically, this
paper makes the following contributions:

e Sirius - We construct Sirius, an open end-to-end intelli-
gent personal assistant system with both speech and im-
age front-ends. In addition to Sirius itself, we compile a
query taxonomy spanning three classes of queries: Voice
Command, Voice Query, and Voice/Image Query. (Sec-
tion 2)

e Scalability Gap - We characterize Sirius on commod-
ity hardware and demonstrate the Scalability Gap for
this type of workload. We observe that the compute re-
sources needed to sustain this workload is orders of mag-
nitude higher than traditional datacenter workloads. We
also perform an analysis of the cycle breakdown of IPA
queries and analyze the computational bottlenecks of Sir-
ius. We show that there is a limited speedup potential for
this workload on general-purpose processors and accel-
eration is indeed needed to address the scalability gap.
(Section 3)

¢ Accelerating Sirius - Based on our cycle breakdown
analysis, we extract 7 computational bottlenecks com-
prising 92% of the cycles consumed by Sirius to compose
a C/C++ benchmark suite (Sirius Suite) for acceleration.
We port these workloads and conduct a thorough perfor-
mance evaluation on a spectrum of accelerator platforms.
The end-to-end Sirius, query taxonomy, input set, Sirius
Suite benchmarks, and the full source code ported across
accelerators are available online [17]. (Section 4)
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Figure 2: End-to-end Diagram of the Sirius Pipeline

e Future Server and Datacenter Design - Based on our
acceleration results, we investigate the implications for
future server designs. After evaluating the trade-offs be-
tween performance, power efficiency and the total cost
of ownership of a datacenter, we propose server and dat-
acenter designs that significantly reduce the computation
gap between user demand and the current datacenter’s
computation capability. (Section 5)

In summary, we find that among the popular acceleration
options including GPU, Intel Phi and FPGA, the FPGA-
accelerated server is the best server option for a homoge-
neous datacenter design when the design objective is min-
imizing latency or maximizing energy efficiency with a la-
tency constraint. FPGA achieves an average 16x reduction
on the query latency across various query types over the
baseline multicore system. On the other hand, GPUs provide
the highest TCO reduction on average. GPU-accelerated
servers can achieve an average 10x query latency reduc-
tion, translating to a 2.6 x TCO reduction. When excluding
FPGAs as an acceleration option, GPUs provide the best la-
tency and cost reduction among the rest of the accelerator
choices. On average, replacing FPGAs using GPUs leads to
a 66% longer latency, but in return achieves a 47% TCO
reduction and simpler software engineering costs.

2. Sirius: An End-to-End IPA

In this section we present Sirius: an end-to-end intelligent
personal assistant (IPA). We first describe the design objec-
tives for Sirius, then present an overview of Sirius and a
taxonomy of query types it supports. Finally, we detail the
underlying algorithms and techniques used by Sirius.

2.1 Sirius Design Objectives
There are three key objectives in the design for Sirius:

1. [Completeness] - Sirius should provide a complete IPA
service that takes the input of human voice and images
and provide a response to the user’s question with natural
language.

2. [Representativeness] - The computational techniques
used by Sirius to provide this response should be repre-
sentative of state-of-the-art approaches used in commer-
cial domains.
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3. [Deployability] - Sirius should be deployable and fully
functional on real systems.

2.2 Sirius Overview: Life of an IPA Query

Figure 2 presents a high-level diagram of the end-to-end Sir-
ius query pipeline. The life of a query begins with a user’s
voice and/or image input through a mobile device. Com-
pressed versions of the voice recording and image(s) are
sent to a server housing Sirius. The user’s voice is then pro-
cessed by an Automatic Speech Recognition (ASR) front-
end that translates the user’s speech question into its text
equivalent using statistical models. The translated speech
then goes through a Query Classifier (QC) that decides if
the speech is an action or a question. If it is an action, the
command is sent back to the mobile device for execution.
Otherwise, the Sirius back-end receives the question in plain
text. Using natural language processing (NLP) techniques,
the Question- Answering (QA) service extracts information
from the input, searches its database, and chooses the best
answer to return to the user. If an image accompanies the
speech input, Sirius uses computer vision techniques to at-
tempt to match the input image to its image database and
return relevant information about the matched image using
the Image Matching (IMM) service. For example, a user can
ask “What time does this restaurant close?” while image(s)
of the restaurant are captured via smart glasses [6]. Sirius
can then return an answer to the query based not only on the
speech, but also information from the image.

As shown in Figure 2, there are a number of pathways a
single query can take based on the type of directive, whether
it be question or action, and the type of input, speech only
or accompanied by images. In order to design the input set
used with Sirius we have identified a query taxonomy of
three classes that covers these pathways. Table 1 summa-
rizes these query classes providing an example for each, the
Sirius services they exercise, the resulting behavior of Sir-
ius, and the number of queries of that type in our input set.
Figure 3 illustrates a tiered view of Sirius spanning the query
taxonomy it supports, the services that comprise Sirius, and
the algorithmic sub-components that compose each service.
We describe these services and algorithms in the following
section.



Table 1: Query Taxonomy

Query Type Example Service Result # of Queries
Voice Command (VC) “Set my alarm for 8am.” ASR Action on user’s device 16
Voice Query (VQ) “Who was elected 44th president?” ASR & QA Best answer from QA 16
Voice-Image Query (VIQ) | “When does this restaurant close?” | ASR, QA & IMM | Best results from IMM and QA 10

Voice Command
(VC)

Voice Query Voice-lmage Query

(vVQ) (VIQ) Query Taxonomy

Automatic-Speech

Question Answering Image Matching

Recognition
(ASR) @A (IMM) IPA Services
Regular Feature Extraction . X
HMMO/?MM Expression Stemmer o Algorithmic
HMM/DNN Conditional Feature Description - Components

Random Fields

Figure 3: Tier-level View of Sirius

2.3 The Design of Sirius: IPA Services and
Algorithmic Components

As shown in Figure 3, Sirius is composed of three IPA ser-
vices: speech recognition (ASR), question-answering (QA),
and image matching (IMM). These services can be further
decoupled into their individual algorithmic components.
In order to design Sirius to be representative of produc-
tion grade systems, we leverage well-known open infras-
tructures that use the same algorithms as commercial ap-
plications. Speech recognition in Google Voice, for exam-
ple, has used speaker-independent Gaussian Mixture Model
(GMM) and Hidden Markov Model (HMM) and is adopting
Deep Neural Networks (DNNs) [18, 19]. The OpenEphyra
framework used for question-answering is an open-source
release from CMU’s prior research collaboration with IBM
on the Watson system [14]. OpenEphyra’s NLP techniques,
including conditional random field (CRF), have been rec-
ognized as state-of-the-art and are used at Google and in
other industry question-answering systems [20]. We design
our image matching pipeline based on the SURF algorithm,
which is widely used in industry [15, 21, 22]. We implement
SUREF using the open source computer vision (OpenCV) li-
brary [16], which is employed in commercial products from
companies like Google, IBM, and Microsoft. The design of
these services are described in the remainder of this section.

2.3.1 Automatic-Speech Recognition (ASR)

The inputs to the ASR are feature vectors representing the
speech segment, generated by fast pre-processing and fea-
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ture extraction of the speech. The ASR component relies
on a combination of a Hidden Markov Model (HMM) and
either a Gaussian Mixture Model (GMM) or a Deep Neu-
ral Network (DNN). Sirius’ GMM-based ASR uses CMU'’s
Sphinx [10], while the DNN-based ASR includes Kaldi [11]
and RWTH’s RASR [12].

As shown in Figure 4, the HMM builds a tree of states
for the current speech frame using input feature vectors. The
GMM or DNN scores the probability of the state transitions
in the tree, and the Viterbi algorithm [23] then searches for
the most likely path based on these scores. The path with
the highest probability represents the final translated text
output. The GMM scores HMM state transitions by mapping
an input feature vector into a multi-dimensional coordinate
system and iteratively scores the features against the trained
acoustic model.

DNN, however, scores using probabilities from a neural
network. The depth of a DNN is defined by the number of
hidden layers where scoring amounts to one forward pass
through the network. In recent years, industry and academia
have moved towards DNN over GMM due to its higher
accuracy [24, 25].

2.3.2 Image Matching IMM)

The image matching pipeline receives an input image, at-
tempts to match it against images in a pre-processed im-
age database, and returns information about the matched
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images. The database that is used in Sirius is the Mobile
Visual Search [26] database. Image keypoints are first ex-
tracted from the input image using the SURF algorithm [15].
In Feature Extraction (FE), the image is downsampled and
convolved multiple times to find interesting points at differ-
ent scales. After thresholding the convolution responses, the
local maxima responses are stored as image keypoints. Fig-
ure 5 details the steps in this process. The keypoints are then
passed to the Feature Descriptor (FD) component where they
are assigned an orientation vector, and similarly oriented
keypoints are grouped into feature descriptors. This process
reduces variability across input images, increasing chances
of finding the correct match. The descriptors from the input
image are matched to pre-clustered descriptors representing
the database images by using an approximate nearest neigh-
bor (ANN) search; the database image with the highest num-
ber of matches is returned.

2.3.3 Question-Answering (QA)

The text output from the ASR is passed to OpenEphyra
(OE) [13], which uses three core processes to extract tex-
tual information: word stemming, regular expression match-
ing, and part-of-speech tagging. Figure 6 shows a diagram
of the OE engine incorporating these components, gener-
ating Web Search queries and filtering the returned results.
The Porter Stemming [27] algorithm (stemmer) exposes the
root of a word by matching and truncating common word
endings. OE also uses a suite of regular-expression patterns
to match common query words (what, where, etc) and filter
any special characters in the input. The Conditional Random
Field (CRF) classifier [28] takes a sentence, the position of
each word in the sentence, and the label of the current and
previous word as input to makes predictions on the part-of-
speech for each word of an input query. Each input query
is parsed using the aforementioned components to generate
queries to the web search engine. Next, filters using the same
techniques are used to extract information from the returned
documents; the document with the highest overall score after
score aggregation is returned as the best answer.
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3. Real System Analysis for Sirius

In this section, we present a real-system analysis of Sirius.
The experiments throughout this section are performed using
an Intel Haswell server (details in Table 3).

Scalability Gap - To gain insights on the required re-
source scaling for IPA queries in modern datacenters, we
juxtapose the computational demand of an average Sirius
query with that of an average Web Search query. To per-
form this experiment, we compare the average query latency
(execution time) for both applications on a single core at a
very low load. Both Sirius and Web Search are configured to
be memory resident and go no further than main memory to
process a query (i.e., minimum I/O activities).

Figure 7a (left) presents the average latency of both Web
Search using open source Apache Nutch [29, 30] and Sir-
ius queries. As shown in the figure, the average Nutch-
based Web Search query latency is 91ms on the Haswell
based server. In contrast, Sirius query latency is significantly
longer, averaging around 15s across 42 queries spanning our
three query classes (VC, VQ and VIQ from Table 1). Based
on this significant difference in the computational demand,
we perform a back-of-the-envelope calculation of how the
compute resources (machines) in current datacenters must
scale to match the throughput in queries for IPAs and Web
Search.

Figure 7a (right) presents the number of machines needed
to support IPA queries as the number of these queries in-
creases. The x-axis shows the ratio between IPA queries and
traditional Web Search queries. The y-axis shows the ratio of
compute resources needed to support IPA queries relative to
Web Search queries. As shown in the figure, current datacen-
ter infrastructures will need to scale its compute resources to
165X its current size when the number of IPA queries scale
to match the number of Web Search queries. We refer to this
throughput difference as the scalability gap.

Sirius Query Deep Dive - To better understand the
IPA query characteristics, we further investigate the aver-
age latency and latency distributions of various query types
for Sirius. Figure 7b presents the average latency across
query types including traditional Web Search (WS), Voice
Command (VC), Voice Query (VQ) and Voice Image Query
(VIQ). As shown in the figure, the latency of all three Sir-
ius query types are significantly higher than that of Web
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Search queries. The shortest query type is VC, which only
uses the ASR service. Yet it still requires orders of magni-
tude more computation than Web Search. The longest query
type is VIQ, which uses all three services including ASR,
IMM, and QA. Among all three services, QA consistently
consumes the most compute cycles.

Table 2: Voice Query Input Set

Q# | Query

ql “Where is Las Vegas?”

q2 “What is the capital of Italy?”

q3 “Who is the author of Harry Potter?”

ql5 “What is the capital of Cuba?”

ql6 | “Who is the current president of the United States?”

Figure 8a presents the latency distribution for each Sirius
service. As shown in the figure, QA has the highest vari-
ability in latency, ranging from 1.7s to 35s depending on
the input query. Figure 8b further presents the breakdown
of execution time among QA’s hot components (described
later in this section) across the complete VQ query input set
(shown in Table 2). The reason for this high latency vari-
ability is not immediately clear from inspecting the query
input set, especially when considering the small difference
between Q2 and Q15 in Table 2. However, after further in-
vestigation, we identified that the high variance is primarily
due to the runtime variability of various document filters in
the NLP component used to select the most fitting answer
for a given query. Figure 8c demonstrates the correlation be-
tween latency and the number of hits in the document filters.
The other services, ASR and IMM, have very low query to
query variability. Next, we investigate the cycle breakdown
of the algorithmic components that comprise each service.

Cycle Breakdown of Sirius Services - To identify the
computational bottlenecks of each service, we perform top-
down profiling of hot algorithmic components for each ser-
vice, shown in Figure 3, using Intel VTune [31]. Figure 9
presents the average cycle breakdown results. Across ser-
vices, a few hot components emerge as good candidates for
acceleration. For example, a high percentage of the execu-
tion for ASR is spent on scoring using either GMM or DNN.
For QA, on average 85% of the cycles are spent in three
components including stemming, regular expression pattern
matching and CREF, and for IMM, the majority of cycles are
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spent either performing feature extraction or description us-
ing the SURF algorithm.

We then identify the architectural bottlenecks for these
hot components to investigate the performance improvement
potential for a general-purpose processor. Figure 10 presents
the instructions per cycle (IPC) and potential architectural
bottlenecks (including front-end, speculation and back-end)
for each component, identified using Intel VTune [31]. A
few of the service components including DNN and Regex
execute relatively efficiently on Xeon cores. This graph in-
dicates that even with all stall cycles removed (i.e., perfect
branch prediction, infinite cache, etc) the maximum speed-
up is bound by around 3 x. Considering the orders of mag-
nitude difference indicated by the scalability gap, further ac-
celeration is needed to bridge the gap.

4. Accelerating Sirius

In this section, we describe the platforms and methodology
used to accelerate the key components of Sirius. We also
present and discuss the results of accelerating each of these
components across 4 different accelerator platforms.

4.1 Accelerator Platforms

We use a total of four platforms, summarized in Table 3
to accelerate Sirius. Our baseline platform is an Intel Xeon
Haswell CPU running single-threaded kernels.

We summarize the advantages and disadvantages of each
accelerator platform below.



Table 3: Platform Specifications

Multicore GPU Phi FPGA
Model Intel Xeon E3-1240 V3 | NVIDIA GTX 770 | Intel Xeon Phi 5110P | Xilinx Virtex-6 ML605
Frequency 3.40 GHz 1.05 GHz 1.05 GHz 400 MHz
# Cores 4 8* 60 N/A
# HW Threads 8 12288 240 N/A
Memory 12GB 2GB 8 GB 512 MB
Memory BW 25.6 GB/s 224 GB/s 320 GB/s 6.40 GB/s
Peak TFLOPS 0.5 32 2.1 0.5
* Core = SM (Streaming Multiprocessor), 2048 threads/SM
Table 4: Sirius Suite and Granularity of Parallelism
Service Benchmark Baseline Input Set Data Granularity
ASR Gaussian Mixture Model (GMM) CMU Sphinx [10] HMM states For each HMM state
Deep Neural Network (DNN) RWTH RASR [12] | HMM states For each matrix multiplication
QA Porter Stemming (Stemmer) Porter [27] 4M word list For each individual word
Regular-Expression (Regex) SLRE [32] 100 expressions/400 sentences For each regex-sentence pair
Conditional Random Fields (CRF) CRFsuite [33] CoNLL-2000 Shared Task [34] | For each sentence
IMM Feature Extraction (FE) SURF [15] JPEG Image For each image tile
Feature Description (FD) SURF [15] Vector of Keypoints For each keypoint

® Multicore CPU - Advantages: High clock frequency,
not limited by branch divergence. Disadvantages: Least
amount of threads available.

e GPU - Advantages: Massively parallel. Disadvantages:
Power hungry, custom ISA, hard to program, large data
transfer overheads, limited branch divergence handling.

e Intel Phi - Advantages: Many core, standard program-
ming model (same ISA), manual porting optional / com-
piler help, handles branch divergence, high bandwidth.
Disadvantages: Data transfer overheads, relies on com-
piler. Note: 1 core is used for the operating system run-
ning on the device itself.

® FPGA - Advantages: Can be tailored to implement very
efficient computation and data layout for the workload.
Disadvantages: Runs at a much lower clock frequency,
expensive, hard to develop for and maintain with soft-
ware updates.

4.2 Sirius Suite: A Collection of IPA Compute
Bottlenecks

To investigate the viability and trade-offs of accelerating
IPAs, we extract the key computational bottlenecks of Sirius
(described in Section 3) to construct a suite of benchmarks
we call Sirius Suite. Sirius Suite as well as its implemen-
tations across the described accelerator platforms are avail-
able alongside the end-to-end Sirius application [17]. As a
basis for Sirius Suite, we port existing open-source C/C++
implementations available for each algorithmic component
to our target platforms. We additionally implemented stan-
dalone C/C++ benchmarks based on the source code of Sir-
ius where none were currently available. The baseline imple-
mentations are summarized in column 2 of Table 4. For each
Sirius Suite benchmark, we built an input set representative
of TPA queries. Table 4 shows the granularity at which each
thread performs the computation on the accelerators. For ex-
ample, both GMM and DNN kernels receive input feature
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vectors from the HMM search, which are all scored in par-
allel but at different levels of abstraction, respectively, based
on each implementation.

4.3 Porting Methodology

The common porting methodology used across all platforms
is to exploit the large amount of data-level parallelism avail-
able throughout the processing of a single IPA query. We de-
scribe the platform-specific highlights of our porting efforts
in the following subsections.

4.3.1 Multicore CPU

We use the Pthread library to accelerate the kernels on the
multicore platform by dividing the size of the data. Each
thread is responsible for a range of data over a fixed number
of iterations. This approach allows each thread to run con-
currently and independently, synchronizing only at the end
of the execution.

For the image matching kernels, we pre-process the in-
put images for feature extraction by tiling the images. Each
thread of the CPU is assigned one or more tiles of the in-
put image (depending on the size of each tile). This al-
lows us to spawn threads once at the beginning of exe-
cution and synchronize threads at the end, instead of par-
allelizing at a smaller granularity within the SURF algo-
rithm, which would require multiple synchronizations be-
tween loops. However, as the tile size decreases, the number
of “good” keypoints decreases, so we fix the tile size to a
minimum of 50x50 per thread.

432 GPU

We use NVIDIA’s CUDA library to port the Sirius compo-
nents to the NVIDIA GPU. To implement each CUDA ker-
nel, we varied and configured the GPU block and grid sizes
to achieve high resource utilization, matching the input data
to the best thread layout. We ported additional string manip-



ulation functions currently not supported in CUDA for the
stemmer kernel.

4.3.3 Intel Phi

‘We port our Pthread versions to the Intel Phi platform, lever-
aging the ability of the target compiler to parallelize the
loops on the target platform. For this, we use Intel’s ICC
cross-compiler. The Phi kernel is built and run directly on
the target device allowing for rapid prototyping and debug-
ging. On the Phi platform, we sweep the total amount of
threads spawned in increments of 60, increasing the number
of hardware threads per core. For some kernels, the max-
imum number of threads (with enough input data) did not
always yield the highest performance. To investigate the po-
tential of this platform to facilitate ease of programming, we
use the standard programming model and custom compiler
to extract performance from the platform. As such, the re-
sults represent what can be accomplished with minimal pro-
grammer effort.

434 FPGA

We use previously published details of FPGA implementa-
tions for a number of our Sirius Benchmarks in this work.
However, due to limited published details for two of our
workloads and to gain further insights, we design our own
FPGA implementations for both GMM and Stemmer and
evaluate them on a Xilinx FPGA.

GMM The major computation of the algorithm lies in
three nested loops that iteratively score the feature vector
against the training data. This training data comes from an
acoustic model, a language model, and a dictionary in the
forms of a means vector, a pre-calculated (precs) vector, a
weight vector, and a factor vector. All of this data is used to
generate a score for the probability of an HMM state tran-
sition. Our focus when implementing the algorithm on the
FPGA was to maximize parallelization and pipeline utiliza-
tion, which led to the design presented in Figure 11. This
figure depicts both a core that computes the score of a single
iteration of the outermost loop and a callout of a log differen-
tial unit. The log differential unit is used to fully parallelize
the innermost loop, while the entire core can be instantiated
multiple times to parallelize the outermost loop. Because of
this, the design is highly scalable as multiple cores can be
used to fill the FPGA fabric. The middle loop of the algo-
rithm was not parallelizable, however, and is represented by
the Log Summation unit. With this design, we were able to
create a high throughput device with a linear pipeline.

Stemmer The Stemmer algorithm computes the root of a
word by checking for multiple conditions, such as the word’s
suffixes or roots. Figure 12 summarizes a single step for our
stemmer implementation. By taking advantage of the mutual
exclusivity of test conditions, we were able to parallelize
these comparisons, which allowed the FPGA to achieve a
much lower latency than the original Porter algorithm. Our
implementation performs multiple vector operations simul-
taneously to count vowels, vowel-consonant pairs, and com-
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pare suffixes. Together, these operations select the correct
word shift for the specific step. We formed a single pipelined
core based upon six steps dealing with the different possi-
bilities of suffixes. We instantiate multiple cores to fill the
FPGA fabric to deliver maximum performance.

4.4 Accelerator Results

Table 5 and Figure 13 present the performance speedup
achieved by the Sirius kernels running on each accelerator
platform, organized by service type. For the numbers from
the prior literature, we scale the FPGA speedup number
to match our FPGA platform based on fabric usage and
area reported in prior work. We also use numbers from the
literature for kernels (Regex and CRF) that were already
ported to the GPU architecture and yielded better speedups
than our implementations.

44.1 ASR

The GMM implementation, extracted from CMU Sphinx’s
acoustic scoring, had the best performance on the GPU
(70x) after optimizations. These custom optimizations on
the GPU achieved an order of magnitude improvement by
optimizing the data structure layout to ensure coalesced
global memory accesses. This leveraged concurrent reads
to sequential memory positions for a warp of 32 threads. In
addition, it was possible to store the entire data required for
the GMM in the GPU memory (2GB) during the deployment



time reducing communication between the host and device.
The Phi platform did not perform as well as the GPU, in-
dicating that the custom compiler may not have achieved
the optimal data layout. The FPGA implementation using
a single GMM core achieved a speedup of 56 ; when fully
utilizing the FPGA fabric we achieved a 169 x speedup using
3 GMM cores. RWTH’s DNN includes both multithreaded
and GPU versions out-of-the-box. The RWTH’s DNN par-
allelizes the entire framework (both HMM search and DNN
scoring) and achieves good speedup in both cases. In the
cases where we use a custom kernel or cite literature, we
assume a 3.7x speedup for the HMM [35] as a reasonable
lower bound.

442 QA

The NLP algorithms as a whole have very similar perfor-
mance across platforms because of the nature of the work-
load: high input variability with many test statements causes
high branch divergence. Fine tuning the stemming algorithm
on the Phi to spawn 120 threads instead of the maximum and
switching from allocating a range of data per thread to inter-
laced array accesses yields a better performance given the
lower number of threads used. The FPGA stemmer imple-
mentation achieved a 6x speedup over the baseline with a
single core using only 17% of the FPGA. Scaling the number
of cores to fully utilize the resources of the FPGA yielded a
30x speedup over the baseline. The stemmer algorithm con-
tains many test statements and is not well suited for SIMD
operations. We attempted to improve our initial stemmer im-
plementation for GPU by replacing most of the conditional
branches with efficient XOR operations [36]. However, our
fine-grained XOR-based implementation performed worse
than our initial version due to additional synchronization be-
tween threads.

443 IMM

The image processing kernels achieved the best speedup on
the GPU which uses heavily optimized OpenCV [16] SURF
implementations yielding speedups of 10.5x and 120.5 x for
FE and FD, respectively. Prior work shows that FPGA yields
better FE speedups but does not show similar increases for
FD. The tiled multicore version yields good speedup but the
performance does not scale as well on the Phi because the
number of tiles is fixed, which means there is little advan-
tage to having more threads available. The GPU version has
better performance because it uses a data layout explicitly
optimized for a larger number of threads.

S.

In this section, we investigate the performance, power and
cost-efficiency trade-offs when configuring servers with dif-
ferent accelerator platforms for Sirius.

Implications for Future Server Design
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Table 5: Speedup of Sirius Suite Across Platforms

Service | Benchmark | CMP GPU Phi FPGA
ASR GMM 3.5 70.0 1.1 | 169.0
DNN 6.0* 54.7* 11.2 | 110.5[37]
Stemmer 4.0 6.2 5.6 30.0
QA Regex 3.9 48.0 [38] 1.1 | 168.2[39]
CRF 3.7 3.8 [40] 4.7 7.51[41]
FE 5.2 10.5 2.5 34.6 [42]
MM FD 59 | 1205 127 | 7551[42]
* This includes DNN and HMM combined.
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Figure 13: Heat Map of Acceleration Results
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Figure 14: Latency Across Platforms for Each Service

5.1 Server Level Design

We first investigate the end-to-end latency reduction and the
power efficiency achieved across server configurations for
Sirius’ services including ASR, QA and IMM.

5.1.1 Latency Improvement

Figure 14 presents the end-to-end query latency across Sir-
ius’ services on a single leaf node configured with each ac-
celerator. We present both results for ASRs that use GM-
M/HMM and DNN/HMM as key algorithms. The latency
breakdown for all hot components within a service is also
presented in the figure. For QA, we focus on the NLP com-
ponents comprising 88% of the cycles of QA as search has
already been well studied [30].
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Table 6: Platform Power and Cost

Platform | Power TDP (W) | Cost ($)
Intel Xeon CPU E3-1240 80 250
NVIDIA GPU GTX 770 230 399
Intel Xeon Phi 5110P 225 2,437
Xilinx Virtex-6 FPGA 22 1,795

Our baseline in this figure, CMP, is the latency of the orig-
inal algorithm implementations of Sirius running on a single
core of an Intel Haswell server, described in Table 3. CMP
(sub-query) is our Pthreaded implementation of each service
exploiting parallelism within a single query, thus reducing
the single query latency. This is executed on 4 cores (8 hard-
ware threads) of the Intel Haswell server. CMP (sub-query)
in general achieves a 25% latency reduction over the base-
line. Across all services, the GPU and FPGA significantly
reduce the query latency. For example, the FPGA imple-
mentation of ASR (GMM/HMM) reduces the speech recog-
nition query latency from 4.2s to only 0.19s. The FPGA
outperforms the GPU for most of the services except ASR
(DNN/HMM). Although Intel Phi can reduce the latency
over the single core baseline (CMP), Phi is generally slower
than the Pthreaded multicore baseline.

5.1.2 Energy Efficiency

Figure 15 presents the energy efficiency (performance/watt)
for each accelerator platform across four services of the Sir-
ius pipeline, normalized by the performance/watt achieved
by using all cores on a multicore CPU by query-level par-
allelism. Here performance is defined as 1/latency. Table
6 presents the power (TDP) for each accelerator platform.
The FPGA has the best performance/watt, exceeding every
other platform by a significant margin, with more than 12 x
energy efficiency over the baseline multicore. The GPU’s
performance/watt is also higher than the baseline for 3 of 4
services. Its performance/watt is worse than the baseline for
QA, mainly due to its moderate performance improvement
for this service.

5.2 Datacenter Design

Based on the latency and energy efficiency trade-offs for
server platforms discussed in the previous section, we evalu-
ate multiple design choices for datacenters composed of ac-
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celerated servers to improve performance (throughput) and
reduce the total cost of ownership (TCO).

5.2.1 Throughput Improvement

The latency reduction shown in Figure 14 can translate to
significant throughput improvement. Figure 16 presents the
throughput improvement achieved using various accelera-
tion platforms without degrading latency beyond the base-
line. Similar to Figures 14 and 15, the CMP baseline ex-
ecutes the original Sirius workload on the Intel Haswell
platform, where all four cores are utilized to serve queries,
thus achieving similar throughput as CMP (sub-query level).
Note that CMP’s query latency is however significantly
longer because CMP (sub-query level) exploits parallelism
within a single query. Figure 16 demonstrates that signif-
icant latency reductions achieved by the GPU and FPGA
translate to significant throughput improvement. For exam-
ple, the GPU provides 13.7x throughput improvement over
the baseline CMP for ASR (DNN/HMM), while the FPGA
achieves 12.6x throughput for IMM. For QA, the through-
put improvement across the platforms is generally more lim-
ited than other services.

Figure 17 presents the throughput improvement achieved
using each acceleration platform at various load levels (the
server is modeled as M/M/1 queue). Compared to Figure 16,
which presents the throughput improvement at 100% load,
when considering queuing effect, the lower the server load,
the bigger impact latency reduction would have on through-
put improvement. In other words, Figure 16 demonstrates a
lower bound of throughput improvement for a queuing sys-
tem. Since datacenter servers often operate at medium-to-
low load, as shown in Figure 17, significant higher through-
put improvement can be expected.

5.2.2 TCO Analysis

Improving throughput allows us to reduce the amount of
computing resources (servers) needed to serve a given load.
However, reducing the number of servers may or may not
lead to reduction in the total cost of ownership of a datacen-
ter (DC). Although reducing the machines leads to reduction
on DC construction cost and power/cooling infrastructure
cost, we may increase the per server capital or operational
expenditure cost either by additional accelerator purchase
cost or the energy cost. Here we present a cost analysis to
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Table 7: TCO Model Parameters [43]

Parameter Value
DC Depreciation Time 12 years
Server Depreciation Time 3 years
Average Server Utilization 45%
Electricity Cost $0.067/kWh
Datacenter Price $10/W
Datacenter Opex $0.04/W
Server Opex 5% of Capex / year
Server Price (baseline) $2,102 [44]
Server Power (baseline) 163.6 W [44]
PUE 1.1
T CMP(sub-query) [ GPU EEN Phi EEEN FPGA
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Figure 18: TCO Across Platforms for Each Service

evaluate the implication on the datacenter cost when using
each accelerated server platform.

We perform our TCO analysis using the TCO model re-
cently proposed by Google [43]. The parameters used in our
TCO model are described in Table 7. The server price and
power usage are based on the following server configuration
based on the OpenCompute Project: 1 CPU Intel Xeon E3-
1240 V3 3.4 GHz, 32 GB of RAM, and two 4TB disks [44].

Figure 18 presents the datacenter TCOs with various ac-
celeration options, normalized by the TCO achieved by a
datacenter that uses only CMPs. Overall, FPGA and GPU
provide high TCO reduction. For example, GPU achieves
over 8 x TCO reduction for ASR(DNN) and FPGA achieves
over 4x TCO reduction for IMM. We will further discuss
the TCO results and use them to derive our DC designs in
the next section.
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5.2.3 Homogeneous Datacenter Design

Based on latency results from Figure 14 and TCO results
from Figure 18, we first investigate the trade-offs when de-
signing a homogeneous datacenter, that is, all servers in the
datacenter have the same configuration. Homogeneous data-
centers are often desirable as they minimize the management
and maintenance overhead [45].

When designing a datacenter, it would be ideal to maxi-
mize performance (e.g, minimize query latency or improve
throughput for a given latency constraint) and minimize the
total cost of ownership. However, trade-offs may need to be
made as which objective should be prioritized if both can-
not be optimized by the same design. Figure 19 presents the
trade-offs between the query latency improvement and the
TCO improvement for each server option across four Sirius
services. The x-axis presents latency improvement and the
y-axis shows the TCO improvement.

As shown in the figure, FPGA achieves the lowest la-
tency (highest latency improvement) among all accelerat-
ing platforms for 3 out of 4 services that we studied. How-
ever, the FPGA’s relatively high purchase cost allows GPUs
to achieve similar or higher TCO savings as FPGAs with
smaller latency reduction. When the FPGA is not consid-
ered an option, the GPU achieves the optimal latency and
TCO for all services. Even with the FPGA as an accelerator
candidate, a GPU-accelerated datacenter provides the best
latency and TCO for ASR using DNN.

Table 8 summarizes the homogeneous datacenter de-
sign for each of the main Sirius services under different
conditions and optimization objectives. We present three
first-order design objectives: minimizing latency, minimiz-
ing TCO with a latency constraint, and maximizing energy
efficiency with a latency constraint, shown as three rows of
the table. The latency constraint here is CMP (sub-query)
latency shown in Figure 14. The first row (with FPGA, with-
out FPGA, without FPGA or GPU) also shows the design
constraints for the accelerator candidates.

Key Observation - In conclusion, FPGAs and GPUs are
the top 2 candidates for homogeneous accelerated datacen-
ter designs across all three design objectives. An FPGA-
accelerated datacenter allows DCs to minimize latency and



Table 8: Homogeneous DC

With FPGA Without FPGA Without {FPGA, GPU}
ASR (GMM) | ASR (DNN) [ QA | IMM | ASR (GMM) | ASR (DNN) [ QA | IMM | ASR (GMM) | ASR (DNN) [ QA | IMM
Hmg-latency FPGA
Hmg-TCO (w/ L constraint) GPU GPU CMP
Hmg-power eff. (w/L constraint) FPGA
Table 9: Heterogeneous DC
With FPGA Without FPGA Without {FPGA, GPU}
ASR (GMM) ‘ ASR (DNN) QA ‘ IMM ASR (GMM) ‘ ASR (DNN) ‘ QA ‘ IMM | ASR (GMM) ‘ ASR (DNN) ‘ QA ‘ IMM
Hetero-latency FPGA | GPU (3.6x) FPGA
Hetero-TCO (w/ L constraint) GPU FPGA (20%) ‘ FPGA (19%) GPU CMP
Hetero-power eff. (w/L constraint) FPGA
maximize energy efficiency for most of the services and is W VCGMM  EEE VO.GMM  EEE VIQGMM B VCDNN [ VODW T VIQDW
the best homogeneous design option for those objectives. Its 0-14x 0l
. . . . 0.12x - 0.8x
power efficiency is desirable for datacenters with power con- oo 2 251
. . . . . 10X
straints, especially for augmenting existing filled datacen- 2 008 e 5 0.6x
ters that are equipped with capped power infrastructure sup- 3 0.06x E 15t = 0
port. It also improves TCO for all four services. On the other 0.04x 5 10x .
hand, FPGA-accelerated datacenters incur higher engineer- 0.02x r
0 0 0

ing cost than the rest of the platforms. For DCs where engi-
neering cost needs to be under a certain constraint, GPU-
accelerated homogeneous datacenters achieve relatively low
latency and high throughput. They also achieve similar or
higher TCO reduction than FPGA due to its low purchase
cost. GPUs could be a desirable option over FPGAs when
the high engineering overhead of FGPA implementation is
a concern, especially given the quick workload churn (e.g.,
binaries are updated on the monthly basis) in modern data-
centers.

5.2.4 Heterogeneous (Partitioned) Datacenter Design

Next, we explore the design options for partitioned heteroge-
neous datacenters. Because each service can run on its most
suitable platform in a partitioned heterogeneous datacenter,
this strategy may provide additional opportunities for fur-
ther latency reduction or TCO reduction. Table 9 shows vari-
ous DC design choices for different design objectives (rows),
accelerator candidate sets (with FPGA, without FPGA, and
without FPGA and GPU) and services (columns). The num-
bers in parenthesis show the improvement on the metric of
the specific design objective of that row when the DC design
switches from a homogeneous baseline to a heterogeneous
partitioned design.

As shown in the first row of the table, when designing a
partitioned heterogeneous DC for ASR, QA and IMM ser-
vices, if all accelerators are considered viable candidates,
GPUs can be used to optimize the latency for ASR (DNN)
and achieves 3.6 latency reduction for that service com-
pared to the homogeneous DC using FPGA across all ser-
vices. Similarly, using FPGAs for QA and IMM achieves
20% and 19% TCO improvement, respectively.

Key Observation - In conclusion, the partitioned hetero-
geneity in our study does not provide much benefit over the
homogeneous design. The amount of benefit is certainly de-
pendant on the workload partition across services. However,
overall, most of the algorithms and services in Sirius work-
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load exhibit a similar trend in terms of preferences for ac-
celerators for FPGA and GPU, etc. There is also additional
cost associated with managing a heterogeneous/partitioned
datacenter that needs to be justifiable by the performance
gain.

5.2.5 Query-level Results for DC designs

In previous sections, we focused on latency, energy-efficiency
and TCO trade-offs for various acceleration options across
three services in Sirius. In this section, we focus on these
trade-offs across three query types supported by Sirius,
namely, VC, VQ and VIQ. Figure 20 presents the query
latency of three query types achieved by the best two ho-
mogeneous datacenters, composed of GPU- and FPGA-
accelerated servers, respectively. In addition to query la-
tency, energy efficiency of the servers and the TCO of the
datacenters to support these query types are also presented.
GPU-accelerated homogeneous datacenters achieve on aver-
age 10x latency reduction, and FPGA-accelerated datacen-
ters achieve a 16x reduction. The accelerated datacenters
also reduce the TCO on average by 2.6 x and 1.4, respec-
tively.

Figure 21 further presents the latency reduction of these
two accelerated datacenters and how homogeneous accel-
erated datacenters can significantly reduce the scalability
gap for datacenters, from the current 165X resource scal-
ing, shown in Figure 7, down to 16x and 10x for GPU- and
FPGA-accelerated datacenters, respectively.
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6. Related Work

In addition to prior work focusing on datacenter efficiency [45—

54], a heterogeneous server design [55] was proposed for
speech and image recognition, where the GMM scoring
and image matching algorithms were ported to hardware
accelerators. However their work does not address the ac-
celeration of NLP algorithms or DNN-based speech recog-
nition. Custom accelerators for specific cloud applications
have also been proposed, for example for memcached [56]
and database systems [57] showing the growing need for
specialized hardware in server applications. The Catapult
project [58] at Microsoft Research has ported key compo-
nents of Bing’s page ranking to FPGAs. In this work, we
focus on accelerating the components that make up an in-
telligent personal assistant focusing on their impact in the
end-to-end system.

Prior work has also investigated acceleration of individ-
ual components of Sirius on various platforms. For speech
recognition systems using GMM/HMM, prior work charac-
terizes and accelerates the workload in hardware [59, 60]. In
the past, GPUs have been successful in accelerating speech
recognition’s GMM [61] and more recently ASR was ported
using a hybrid CPU-GPU approach [62]. The Carnegie Mel-
lon In Silicon Vox [63] project has implemented an FPGA
based GMM/HMM speech recognizer with a relatively small
vocabulary. Image processing algorithms have been shown
to map well to accelerators [64-66]. Key natural language
processing techniques also show promising results when
ported to hardware [67, 68]. Additionally, low-power accel-
erators for deep neural networks [69, 70] have garnered the
interest of researchers as DNNs can be parallelized easily
but have better accuracy compared to conventional machine
learning techniques [71].

7. Conclusion

This work introduces Sirius, an open end-to-end intel-
ligent personal assistant application, modeled after pop-
ular IPA services such as Apple’s Siri. Sirius leverages
well-established open infrastructures for speech recogni-
tion, computer vision, and question-answering systems. We
use Sirius to investigate the performance, power, and cost
implications of hardware accelerator-based server architec-
tures for future data center designs. We show that GPU- and
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FPGA-accelerated servers can improve the query latency on
average by 10x and 16 x. Leveraging the latency reduction,
GPU- and FPGA-accelerated servers can reduce the TCO by
2.6x and 1.4 x, respectively.
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